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Wedescribestatisticaltechniguedor effectiveevaluationof large
virtual combinatoriallibraries (>10'° potentialcompounds)The
methodslescribedare usedfor computationallyevaluatingtem-
plates (prioritization of candidate libraries for synthesisand
screeningpndfor thedesignof individual combinatoriallibraries
(e.g.,for a givendiversitysite, reagentscan be selectecbasedon
the estimatedrequencywith which theyappearin productsthat
passa computationalfilter). Thesestatistical methodsare pow-
erful becauseheyprovidea simplewayto estimatethe properties
of the overall library without explicitly enumeratingall of the
possibleproducts.In addition, they are fast and simple,and the
amountof samplingrequired to achievea desiredprecisionis
calculable.In this article, we discusghe computationamethods
thatallow randomproductselectionfrom a combinatoriallibrary
and the statisticsinvolved in estimatingerrors from quantities
obtainedirom suchsamplesWethendescribethreeexamples(1)
an estimateof averagemolecularweightfor the severalbillion
possibleproductsin a four-componentJgi reaction,a quantity
that can be calculatedexactlyfor comparison;(2) the prioritiza-
tion of four templatedor combinatorialsynthesisisinga compu-
tational filter basedon four-point pharmacophoresand (3) se-
lection of reagentdfor the four-componentgi reactionbasedon
their frequencyof occurrencein productsthat passa pharma-
cophorefilter. © 2000by ElsevierSciencenc.
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INTRODUCTION

Combinatorialchemicalsynthesisoffers the promiseof large
numbers,with a single syntheticstrategyroutinely providing
accesdo millions of uniqguecompoundsThe potentialavail-
ability of millions or evenbillions of compoundss particularly
appealingin the area of drug discovery, where good lead
candidatesrerare! andthe chanceof finding aleadcandidate
is generallythoughtto increasewith the numberof compounds
synthesizedand screenedHowever, large numberscan be a
burden.Associatedwith eachchemicalsynthesizedn a com-
binatorial library is the overheadof purification, analysis,bi-
ological assay,and deconvolutionof potentialhits if mixtures
of compoundsrescreenedTheresourcemecessarganoffset
thebenefits andit quickly becomeslesirablgo limit andfocus
synthetic and screeningefforts. To this end, computational
modelshave helpeddirect drug discoveryefforts using com-
binatorialsynthesig-5> Suchmodelscanbeusedto filter alarge
library, resulting in a smaller library that is enrichedfor a
desiredproperty.Theresultantsmallerlibrary is takenforward
to chemical synthesis,purification, and analysis,and finally
assayedgainstone or moretargets.

The computationamethodsappliedto combinatorialibrary
designarecloselyrelatedto methodsusedin searchingvirtual
databasef compoundsin screeningapplicationsibraries of
compoundsgeneratedrom internal syntheticefforts or pur-
chasedrom externalsourcesarescreene@gainstnewly iden-
tified targets. Thesecollections are often large (10° to 10°
compounds)and screeningall of the compoundsmay not be
practical. Computationalmethodscan be employedat this
stageto filter the compoundghataretakenforwardto screen-
ing. If activecompoundsarealreadyknown,thefilter cantake
the form of a similarity search|.e., identification of the com-
poundsin the collectionthataremostchemicallysimilar to the
known activesé-8 A moregeneralapproacthis to takeforward
a subsetof the collectionthatis highly diversewith the hope
thatthe chemicalinformationin the subseis sufficiently close
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to that of the entire collection so that no opportunitiesare
missed-° Clusteringmethodsie-13in which chemicallysimilar

compoundsaregrouped alsocanbe useful,becauseorporate
collectionsoften consistof compoundsrom previousdiscov-
ery efforts (againstdifferent targets)and, therefore fall natu-
rally into clusters.Representativefrom eachcluster can be
takenforward,and,whenhits areidentified, the nextscreening
round can be focusedon the other membersof the “active”

clusters.The importantpoint is that all thesemethodsapply
computationalfilters to the library. Eachcompoundis repre-
sentedon the computerand evaluatedusing algorithmsde-
signedto eliminateundesiredmolecules.

Computationafilters, similar to thoseusedfor the searching
of screenindibraries, canbe appliedto combinatoriallibrary
design.Suchlibrariestypically are derivedfrom a scaffold,a
setof chemicalreactions,and selectedlists of reagentsThe
resultingproductscanbe representeéh silico andselectedor
synthesishasedon the criteriadescribecearlier(i.e., similarity
to known actives,chemicallydiversefrom one another,etc.).
However, combinatorialsynthesisposesthe following addi-
tional constraint.To reducecostsand to simplify the overall
synthesisthe numberof reagentsat eachdiversity site should
be keptto a minimum, which may conflict with the selections
from the computationalfilter. Note that additionalcomplica-
tionsassociatedvith combinatoriaimixturesarenot presenin
our designs becauseour syntheticschemesesultin purified,
single compoundsThis constraintcreatesan interestingopti-
mization problem:How canwe maximizethe numberof de-
sired compounds(those that passthe computationalfilter),
while keepingthe numberof reagentsto a minimum? This
problem has been addressedor chemistrieswith relatively
small potentialproductspaceg<10° compoundspy methods
that enumeratehe completesetof productsandthenselecta
subsetthat optimizesthe characteristic®f the productswhile
maintainingthe constraintsf combinatorialsynthesis# 15 But
whatif the setof possibleproductsis too largeto allow for the
completecomputationakexaminationof all possibleproducts?

This articledescribeiow randomstatisticalsamplingof the
possibleproductsin a combinatoriallibrary providesa simple
way to estimatethe propertiesof theoveralllibrary withoutthe
needto explicitly enumeratall of the library’s possibleprod-
ucts. This allows computationafilters to assesgombinatorial
libraries that are vast (e.g., >10" possibleproducts).Use of
thesestatisticalestimatesallows us to evaluateand prioritize
differentlibrariesthatare candidategor synthesisandscreen-
ing. In addition, an extensionof this techniquefacilitates se-
lection of reagentdor synthesisat a diversity site, asthey can
be rankedby the estimatedrequencywith which they appear
in productsthat passa computationalfilter (i.e., a “virtual
screen”).The statisticalmethodspresentedhavethe advantage
that they are fast and simple, and the amountof sampling
requiredto achievea desiredprecisionis calculable.

We first discussthe software designthat allows random
productselectionfrom a combinatorialibrary andthe statistics
involved in estimatingerrors from quantitiesobtainedfrom
suchsamplesWe thendescribehreeexamples(1) anestimate
of averagemolecularweight for the severalbillion possible
productsin the four-componentJgi reaction,a quantity that
canbe calculatedexactlyfor comparison{2) the prioritization
of four templatesfor combinatorialsynthesisusinga compu-
tational filter basedon four-point pharmacophoresand (3)
selectionof monomersfor the four-componentUgi reaction

basedon their frequencyof occurrencen productsthat passa
pharmacophoréilter.

METHODS
Virtual Combinatorial Libraries

Representatiorof moleculesin computer programss now
commonplacein two dimensionsioleculesarerepresenteds
networksof elementsandbonds;in threedimensionsgcoordi-
natesof atomic nuclei are storedandthe relative positionsof
atomsin a molecule are mostly determinedby force-field
approximationgo the interatomicforces.In either case,it is
impracticalto construcandstoreall possibleproductdor large
combinatoriallibraries in computermemory. However, it is
possibleto represenacombinatorialibrary asa setof reagents
and reactions.A chemical reaction simulation program (the
Cascader™jvasdevelopednternallyto provideautomatiorin
the enumerationof combinatoriallibraries. Briefly, the Cas-
cader™takesreactantmoleculesreactiontransformationsand
synthesisschemessinput. Thereactanmoleculegprovidethe
building blocksfor productenumerationReactiontransforma-
tions provide details about what combinationsof functional
groupswill react, along with the atom transformationsfor
convertingcombinationsof reactantsnto products.The syn-
thesisschemeg‘cascades”fescribehowreactionsarechained
togetherto simulate a multistep (or multicomponent,“one-
pot”) synthesis.The reaction-basegroduct enumerational-
lows accesgo a very large populationof products(millions to
billions), which cannotbe practicallyenumeratedandprovides
an implicit way to store them. Insteadof storing the list of
moleculesthat comprisethe collection,we storea setof rules
and constraintsfor generatingsuchmoleculesfrom the much
more easily storedreactants.

Random Sampling of Products

The combinationof a cascadeand setsof reactantmolecules
definesa populationof virtual products,or a “virtual library.”
If eachsetof reactantmoleculesis thoughtof asa list, each
combinationof reactantqone per set) can be thoughtof asa
coordinatdn thevirtual library, in which eachdimensiorof the
coordinates anindexinto the correspondingeactantist. The
Cascadercan enumeratespecific coordinatesof a virtual li-
brary, eachof which representsa particular combinationof
reactantmoleculesthat result in a product structure. This
provides a convenientmechanismfor fully enumeratingall
productsor samplinga subsetof productsfrom a specified
virtual library. If only uniqueproductsaredesireda canonical
representatiorof eachproductcan be constructedand com-
paredto the growing list of previouslyseenproducts.

Thesecorelibrary enumeratioralgorithmsform the basisof
severalstand-aloneools that can producearbitrary subsetof
uniqueproductsof specifiedsizes.They alsocanbe accessed
via an extensionmodulein a chemicalscripting environment
basednthePythonprogrammindanguageo provideasource
of molecular productsthat can be samplediteratively until
somearbitrary terminationcondition is met. In this case,the
terminationcondition of interestis a user-specifiedsampling
accuracy.
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Estimating Sampling Error

The reaction-basegroductenumeratiorprovidedby the Cas-
caderallows us to storeimplicitly a large populationof prod-
ucts. Although this populationis too large to enumerateex-
plicitly, any productcanbe readily constructedrom a chosen
combinationof reagentsandthe rulesfor combiningthem.By
storingour collectionof moleculesn thisway, we cangenerate
a uniform randomsample(with or without replacementand
use the proportionsmeasuredn the sampleto estimatethe
propertiesof the entire (implicit) collection.

Fortunately, the mannerin which sample measurements
approximatehetotal populationeffectivelyis well understood.
We can, therefore,designour sampleto guaranteethat the
measuregroportionis within a given toleranceand probabil-
ity. It has beenshown previously (see,for example,Hoeff-
ding!®) that if we wish to measurea proportionto within an
absoluteerror of £x%, a sampleof sizek hasa probability of
giving anincorrectresultof no morethari”:

2e kx2/2,000. (1)

For example,a sampleof size1,000is sufficientto guarantee
ameasuremerthatfalls within a 10%absolutesrrorof thetrue
value with a probability >98.5%. It is importantto note that
20% estimatedio an absoluteerror of 10% is a numberfrom
10%to 30%, not 18%to 22%. As long asthe sampleis drawn
uniformly (and independently),this bound (Equation 1) is
correct, independentf the size of the total populationand
independenbf the unknownproportion.

Becausd=quationl is generaljt tendsto predictthata fairly
large samplesizeis necessaryHowever,if we wereto incor-
poratedomainknowledge(suchasknown boundson the true
proportionand,to alesserextent,the total populationsize),we
can prove that smallersamplessuffice. For this case,we can
usethe exactbinomial formula insteadof the Hoeffding esti-
mate.When our sampleis drawnwith replacementthe exact
oddsof succesdecome:

(p+x)
100

> ( i )(p/100)i(1 — p/100)N 2)
i:(pr>
100

where N is the size of the original populationand p is the
(unknown)true proportion(written asa percentage)As p will

not be known, a good approximationcan be obtained by
replacingthe unknownvalueof p with the worst-casersalue of
50% or with a user-suppliedound.Also, the exactvalueof N
is not required,so any upperboundwill do.

For sampleswithout replacementthat is, sampleswith no
repeatedralues) theboundsbecomeslightly tighter(especially
for smallN); however the explicit oddsof successgainarea
simple series.We have implementedeach of the methods
describedhere and use them, as appropriate,to designour
samples.For the more difficult problem of measuringvery
small proportionsto a givenrelativeerror, seeMount8 These
methodscan be usedto makeinformed choicesbetweenrare
events (one of which might be much more desirablethan
others).

Computational Filters

In two of the examplesof randomsampling,we usecomputa-
tionalfilters constructedrom pharmacophore-bas&d whole
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molecule descriptors.Pharmacophorelescriptionsof mole-
cules and their applicationto virtual library searchingand
designhave beemlescribelsewheré?-21andonly thedetails
pertainingto their usein evaluatingrandomsampleswill be
summarizechere. The majorcomponenbf our 3D descriptors
is the “four-point pharmacophore,’which consistsof four
chemical featuresand the six interfeaturedistances,and a
chiral indicator. Standardfeature types (i.e., hydrogen-bond
acceptorsand donors, hydrophobes,negative and positive
chargesandaromaticgroups)wereidentified on moleculeshy
substructurequery matchesas describedby others?2.23 The
potentialnumberof pairwisefeaturedistancess limited to a
specific set of distancebins (e.g., interfeaturedistancesbe-
tween3.5and5 A would mapto a single distancebin). We
used 14 bins for the two- and three-point pharmacophore
distances,spanning1.6 to 13.2 A, and eight bins for the
four-point pharmacophorelistances spanningthe samedis-
tance.Thus, the “pharmacophorespace”(all possiblecombi-
nationsof two, three,and four features)is predeterminedy
interfeaturedistancebins andthe specificsetof features Sim-
ilar to Mason et al.2° we use a “molecular signature,”a
bit-string wherethe presenceor absenceof eachof the two-,
three-,or four-pointpharmacophoreis recordedThis resulted
in a pharmacophorsignaturelengthof ~12 million bits.

Our computationalfilters consistof a specific subsetof the
bits in the pharmacophoresignature (an ensemble)that is
associateavith a desiredpropertyin a chemicalproduct(e.qg.,
pharmacophorethat are presentin biologically active mole-
cules). In the examplesthat follow, two different filters are
used. The first consistsof a randomly selectedset of 100
pharmacophoregom the ~12-million bit signature.The sec-
ond consistedf anensemblef 62 pharmacophoresontained
in the conformationof NAPAP boundto Thrombin (1IETS
structurein the protein databanky*

To assessavhetheran individual moleculehasthe desired
property(i.e., passeshe computationafilter), we generatehe
conformationalmodel for the moleculesusing an in-house
program CONAN (ConformationalAnalysis by intersection)
describedn greaterdetail elsewher&s26 Thenall two-, three-,
and four-point pharmacophorethat are presentin the mole-
cule’s conformersare recordedas the molecule’spharmaco-
phoresignatureThemoleculepasseshecomputationafilter if
its signaturecontainsa specified number of the pharmaco-
phoresin the ensemble.

It is importantto point out that thesecomputationafilters
were generatedfor purposesof demonstratingthe sampling
methodsrather than constructinga predictive computational
modelfor biological activity. Thoseinterestedn the construc-
tion of pharmacophorensemblegeneratedrom activity data
for a particularbiological target should refer to the work of
Bradleyet al.26

Applications of Random Sampling

Physical property estimation  The simplestapplicationof
randomsamplingis estimatingthe averagephysicalproperties
of the productsin a combinatoriallibrary. Each compound
choseris constructedn silico, andits propertiesarecalculated.
As the compoundsare sampledsequentiallyyunningaverages
of properties are computed and convergencecriteria are
checked Whenthe estimatecerrors forthe given samplesize
are acceptably small, sampling is terminated. Molecular
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weight,calculatedbctanol/watepartitioncoefficient,andnum-
ber of rotatablebondsare exampleof physicalpropertiesghat
canbe estimatedand usedto comparecombinatoriallibraries.
Thesepropertiesalthoughnot well correlatedwith biological
activity, are usefulin determiningwhich libraries follow ob-
servedpropertiesin known drugsz27.28

Template evaluation A more challengingapplicationfor
randomsamplingis to usethe sampledcompoundgo estimate
what fraction of a combinatorial library will passa more
complexcomputationafilter (describedearlier). After a sam-
pled productis synthesizedon the computer,its low-energy
conformationsdetermined,and its pharmacophorelescriptor
constructeda scoreis assignedo the productbasedon the
numberof pharmacophoreis hasin commonwith thosein the
virtual filter. As eachrandomlysampledproductin the virtual
combinatorialibrary is sampledarunningaverageof scoreds
keptand an overall “passrate” (i.e., fraction of productsthat
passsome score threshold)is computed.Libraries then are
comparecbasedon their passrates.The higherthe passrate,
themorelikely thelibrary is ableto provideproductsthatpass
the computationalfilter. We useda pharmacophordilter of
500 randomly selectedpharmacophoresto passthe filter, a
compounchadto have>100 of thesepharmacophoregresent
in its signature.

Monomer selection Randomsamplingtechniquesanbe
extendedo facilitate combinatorialibrary designfor synthesis
onasingletemplate Oftencombinatoriachemistriesnvolve a
singlechemicalscaffold,or template on which pendangroups
can be attachedto “diversity sites” using various synthetic
strategiesEachdiversity site hasa restrictedsetof chemicals
thatareappropriateusuallybecauséhey musthavea reactive
chemicalmoiety (e.g.,if atemplatewith anamineparticipates
in an amide bond formation, the reagentmust be anacid).
Neverthelesseachreagentist for a diversity site canbe quite
large(hundredr thousandef compounds)andit is desirable
to limit consideratiorio thosemonomerghataremorelikely to
bepresenin “successful’(i.e.,modelmatching)productsThis
canbe accomplisheduising a techniquecalled “lockdown”.

In randomsamplingwith “lockdown,” productsare gener-
ateduntil thereare enoughof themto gatherstatisticson the
monomersat the different diversity sites. At that point, one
diversitysiteis selectedandeachpossiblenonomenatthatsite
is evaluatedoasedon its prevalencdan productsthat passthe
virtual filter. Thus,eachmonomerhasa “succesgate” thatis
usedto rank the monomerlist. In this example,successvas
definedaspassingathresholdof betweer80to 40 bits from the
filter of 63 pharmacophoreits from a thrombin-inhibitor(de-
scribedin the Methods).

9 461 2285

1372

Monomersthatareseldomfoundin successfuproductsare
removedfrom the initial reagentlist for that diversity site,
leavingonly thosereagentsvhoseproductshada high success
rate.This diversity site hasthenbeen®locked down,” i.e., only
a subsetof the original reagentist remains.The processhen
is repeatedfor a seconddiversity site, only this time, the
potentialproductspaceis reducedby the fraction of reagents
that were purgedfrom the first lock-down.

Eachsuccessivéockdownresultsin a smallervirtual prod-
uct spacethat containsa higherfraction of successfuproducts
than were presentbefore the lockdown took place. After the
last lockdown, we are left with a sublibrary that has a high
percentagef productsthat passthe virtual filter andthatobey
the constraintsof matrix combinatorialsynthesis.The lock-
down can be carriedout in a way that yields a library that,
althoughstill too large to take forward to combinatorialsyn-
thesis,canbe fully enumeratedn the computer.Oncethis is
the case,otheroptimizationmethodscanbe appliedto design
an even smaller, synthetically practical, combinatorial li-
brary_l4,15,29,30

RESULTS

Example 1. Estimating Physical Properties:
Molecular Weight

Thefour-componentgi reactio’! (Figurel) is agoodexam-
ple of a reactionthat can be usedto generatea very large
combinatorial library. Computationalanalysis of the entire
library, which in this examplehas ~13 X 10° products,is
impractical. However, its propertiescan be estimatedfrom a
randomsamplingof its products.The molecularweightis an
exampleof sucha property. Becausethe averagemolecular
weight of the productsis the sum of the averagemolecular
weight of the reactant§minusthe weight of the elementshat
are lost in the reaction),we have anexact solution for the
averagamoleculanweightof the ~13 x 10° products Figure?2
showsthe estimateof this quantitybasedon randomsampling
of products An averagemoleculamweightcalculatedrom only
600 productsis within 0.5 amu of the actual value of 615.
Moreover,the errorin the estimateis easily calculatedso that
the numberof samplesnecessanto obtain a given error is
known.

Molecularweightwaschoserbecausés valuefor theentire
library wasreadily calculable.Other physicalproperties such
as the numberof rotatablebondsor the calculatedoctanol/
water partition coefficient, could be calculated using this
method.The resultsfrom a computationabssessmer(e.g.,a
scoreindicating how well a productmatchesa computational

I‘-I R2 ﬁ
MeOH J\
/N P
_H RT R1 H N R4

13,007,197,980

Figure 1. Four-componenUgi reaction.For the givennumberof isocyanidesaldehydesaminesand carboxylicacids,there

are (theoretically)morethan 13 billion products.
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Figure 2. Estimateof the average
molecular weight of Ugi reaction
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model)of eachsampledoroductcanbe the estimatedjuantity,
asis the casein the following examples.

Example 2: Template Evaluation

In this examplewe rank orderchemistriedasedon the ability
of their productsto passa computationalfilter. Randomly
chosenproductsfrom eachchemistrycanbe evaluatecandan
estimateof an overall “passrate” can be obtained.Combina-
torial libraries with the bestpassrateswould receivepriority
for chemicalsynthesisor would be subjectto more detailed
computationaknalysis.

As an exampleof this, we chosefour librarieswhoseprod-
uctsdiffer only by thechirality of thetemplatethatdisplaysthe
monomergFigure3). Eachlibrary containedL,280compounds
built arounda chiral cyclopentangemplate.The productsin
eachlibrary weresampledandscoredagainsta pharmacophore
filter, asdescribedn the Methods.

The scoreof a moleculeis the fraction of the pharmacoph-
oresin the ensembldilter thatare containedh the molecule’s
pharmacophoreéescriptor(a similar procedures describedn
greaterdetail by othersz0.26 althoughin our case,eachmole-
culeis scoredndividually by its ability to presenpharmacoph-
oresthatare containedh the ensemble)lf the scoreis greater
than an establishedthreshold,the moleculeis a “hit.” The
fraction of sampledmoleculesin a library that passesthe
thresholdis the estimateof the library’s hit rate.

The resultsfor the estimatedhit ratesfor the four libraries
areshownin Figure4. As seenin Figure4, therelativeranking
of thelibrariesis quickly establishedAfter fewerthan10% of
the productsof the libraries have beersampled the libraries
couldbeprioritizedfor furtheranalysisor synthesisThus,very
rapidlibrary comparisonganbe madefrom randomlysampled
productsof the virtual libraries.

Of course,four libraries that consistof only 1,280 com-
poundscould be prioritized throughexplicit enumeratiorof all
the compoundsn the virtual libraries ratherthan by random
sampling.A more practical examplecan be drawn from the
templateevaluationandprioritizationin oneof our therapeutic
projects.In this project,a pharmacophorenodel was derived
from known activity data.An ensembleof 50 pharmacophores
wasidentified thatwasableto distinguishactivefrom inactive
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moleculesThesepharmacophoresereusedto scoreproducts
from virtual libraries. Approximately 70 templateswere pro-

posedfor synthesiswith eachconsistingof >250,000possible
chemicalproducts.Eachchemistrywas evaluatedrom a ran-
domsampleof ~5,0000f its products A thresholdof 60%was
establishedor a compoundto be model matching.With this

threshold,sevenof the chemistriescontained>1% model-
matching compoundsand three contained >10% model-
matchingcompoundsThus,threechemistriesvere takenfor-

wardto synthesidasedon this evaluationThis morepractical
exampleshowshow chemistriescan be prioritized from eval-
uationof a smallfraction (in this case~2%) of their possible
products.

R3\QANR2

NR,~ " =R3
\
OR/

OR,
Library 1 Library 2
R3\@,NR2 NRWR3
_J \
OR, OR,
Library 3 Library 4
R, = alkyl, aryl

R, = COX, CONHX, SO,X, CH,X
R, = CONX, CH,0X

Figure 3. Four sterecisomeridemplatesand the typesof
monomerspossibleat each of three diversity sites. The
diastereomeproductswere sampledrandomlyand scored
to prioritize eachtemplatefor chemicalsynthesisThere-
sults of the evaluationare shownin Figure 4.
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Figure 4. Cumulativepassrates for the four chemistries
shownin Figure 3. Each randomly sampledproductis a

stereoisomenf thoseon the other threetemplatesso only

the stereochemistrpf thetemplatediffers at eachsample.
Thefirst templateclearly containsmore productghat pass
the virtual filter and is, therefore,the leading candidate
templatefor chemicalsynthesis.

Example 3: Monomer Selection Using
Combinatorial “Lockdown”

After templatesandchemistrieshave beendentified ascandi-
datesfor combinatoriakynthesisthetaskof selectingreagents
remains.Dependingon the templateand the reaction, each
diversity position may permit the use of hundredsor even
thousand®f possiblereagentsLimits on resourcegor synthe-
sis of combinatoriallibrariesrequirethatthe potentialreagent
lists be trimmed significantly. Randomsamplingof a virtual
library could identify individual compoundsthat are model
matching.Such“cherry-picked”moleculesoftenareincompat-
ible with matrix synthesis.Random sampling followed by
“lockdown” asdescribeckarlierprovidesan efficient meanso

Table 1. Stages of combinatorial lockdown

identify a subsetof the possibleproductsthat are both model
matchingand consistentwvith constraintsof matrix synthesis.

We will againusethe four-componentgi reaction(Figure
1) to illustrate library design using random sampling with
lockdown. The Ugi reactionis a one-potreaction and not
subjectto the constraintsof efficient matrix synthesisNever-
theless,if one seeksto minimize the number of reagents
orderedwhile maintaininga high density of model-matching
compoundsthe requirementsare identical to thoseof matrix
synthesisGivensetsof reagentswhich subset®f thelists will
resultin a high densityof model-matchingproducts?

In this example,we usethe lockdown methodto trim the
numberof productsfrom >10'° to <10°. In the full virtual
library, which has reagentlist sizes of 9 isocyanides,461
aldehydes?,285amines,and1,372acidsfor the R1, R2, R3,
andR4 positions,respectivelythe fraction of modelmatching
compoundss <0.02%.After lockdown,the reagentdist sizes
have beertrimmedto 9, 19, 20,and 19, andthe final density
of model matchingcompoundgi.e., thosethat contain40 of
the 50 preferredpharmacophoresy 100%.

Table1 showsthe numberof reactantpresenin thevirtual
library at eachstageof the lockdown. It is possibleto limit the
amountof samplingnecessaryy a judicious selectionof the
order of the reagentdocked down. By selectingthe shortest
monomerlist for the initial lockdown,the smallesthnumberof
productswill haveto be sampledo achievethe desiredstatis-
tical accuracy(comparedo the numberof samplesequiredif
alargerlist werechosenrfor theinitial lockdown).In this way,
when the statistically more challenginglarger lists are exam-
ined, the virtual library size hasalreadybeengreatlyreduced,
makingthe searcheasier.In the first step,approximately400
aldehydesare filtered out. For each aldehyde,the sampled
productsthat containit are ableto meetthe requirementgor
succesgmatching30 of the 50 pharmacophorei® the model)
morethan30% of thetime. In the nextstageof lockdown,only
80aldehydesreallowedto participatein therandomsampling
of products.Basedon ~40,000 random samplesfrom this
reducedproductspacetheacidlist is reducedoy afactorof 20
through applicationof the samefilter with a more stringent
cut-off of 36 of 50.

At each stage of the lockdown, the size of the library
decreaseandthe quality of the productsincreasesThis allows
usto adjustthefilters to maketherequirementsnorestringent.
The thresholdfor the fraction of productsthat passthe cut-off

Lockdown Monomer Possible Products Filter Threshold
stage selected R1 R2 R3 R4 products sampled passraté® for filter
1 R2 9 461 2,285 1,372 13,007,197,980 36,000 030.20 30
2 R4 9 80 2,285 1,372 2,257,214,400 40,000 0:30.16 36
3 R3 9 80 2,285 69 113,518,800 79,000 08Mm.08 38
4 R2 9 80 106 69 5,266,080 7,000 0.300.13 40
5 R3 9 19 106 69 1,250,694 14,000 0.300.06 40
6 R4 9 19 20 69 235,980 9,000 0.860.05 40
Final R1/R2/R3/R4 9 19 20 19 64,980 64,980 1.00 40

2 Errors calculatedfrom Equation2.
SeealsoFigure 1 for explanationof R1-R4.
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is raised,asis the numberof pharmacophorethat mustbe hit
by a successfuproduct. Thelast stageof filtering createsan
optimally densesetof modelmatchingcompounddasednan
explicit enumeratiorof all the productsin the virtual library.3°

DISCUSSION

We haveshownhow randomsamplingis a very practicaland
usefultool in the computationalevaluationof hugecombina-
torial libraries. It provides an efficient meansto prioritize
combinatorialchemistry strategiesand can be usedto select
reagentfor combinatorialsynthesison a singletemplate.
The main advantageof library designusing randomsam-
pling over other design methodsderives from the reaction-

basedepresentationf proposecchemicalsyntheticstrategies.

Becauseof this, virtual productscan be randomly chosen,
constructedandcomputationallyevaluatedvithoutthe needto
fully enumerateall possibleproducts.Thus, conclusionsare
basedn sampleghatrepresenthefull chemicalproductspace
availableto the chemicalsynthesisat a small fraction of the
computationatostthatwould berequiredto evaluateheentire
library of products.

In our analysisof randomlysampledcompoundgrom large
virtual combinatoriallibraries, we have concentratecbn the
estimatechumberof compoundghat passsomecomputational
filter and, as a result, did not concernourselveswith the
estimatedshapeof the distribution. One could easily usethe
randomly sampledcompoundgo estimateother quantitiesof
the distribution of the entire combinatoriallibrary, such as
higher momentsor propertiesof the tail of the distribution
using extremevalue theory32

The resultsfrom randomsamplingare approximationsput
the strengthof this methodis that the errorsassociatedvith
theseestimateganthemselvebeestimatedasedn statistical
theory. This permits calculation of the number of samples
required to achievea given accuracyin the results. Such
estimatesare critical whendeterminingthe necessargompu-
tational resourcesand time, and this ability is becomingin-
creasinglyimportantas computationalmethodologiesare in-
corporated into mainstream combinatorial production
pipelines.

A more novel applicationof randomsamplingis the com-
binatorial “lockdown” approachwhich facilitatesreagentse-
lection for specific combinatorialreaction schemesthat are
basedon a single chemicaltemplateor scaffold. By succes-
sively trimming away reagentghat are seldomfound in suc-
cessfulproducts,this techniqueidentifies regionsof product
spacethat havea high densityof desirableproductsand obey
the constraintsof matrix synthesisln the Ugi reactionexam-
ple, the numberof productswas reducedby five orders of
magnitudewithin a handfulof CPU days.

Thelockdownmethodis flexible aswell. The stringencyof
thefilters appliedto the randomlysampledcompoundsanbe
modulatedat eachstageof the lockdownasthe quality of the
surviving productsin the virtual library improves.In addition,
the processcan be moreiterative. Onceall the monomerlists
have beeockeddown,the constrainton anyof themonomer
positionscan be relaxed,and the lockdown at that monomer
site can be repeatedo seeif the chosenreagentlists change.
That would provide a more robust, self-consistentockdown
procedure.

However,the lockdown methodhassomelimitations. It is

an approximationto a full evaluationof the entirelibrary, and
thereis no guaranteehatthe final monomerschosenresultin

the bestsetof products Moreover,eventhoughthe evaluation
is basedon fully constructedoroducts,thereis the possibility
that the bestmonomersmatchthe computationaimodel (i.e.,

passthe virtual filter) by themselveslf this werethe casethe
resultwould be equivalentto independentomputationakval-
uationof the reagentsHowever,the randomlysampledprod-
uctsthat satisfythe computationamodelareknown, andthey
canbe examinedo determinehow they satisfythe model.For
the pharmacophoremodelswe usedwe havefoundthatwhole
products,ratherthanindividual side chains,are necessaryor

successin the Ugi lockdown example,partial productswere
constructedor eachreagentist (by reactingthe otherdiversity
siteswith a minimally small reagent) Only 2% of thesecom-
poundscontainedover 30 of the 62 pharmacophores the
ensembldilter, andnonecontainedover 40. Thus,the enrich-
ment shownin Table 1 could not have beerpbtainedfrom

analysisof the side chainsalone.

The methodsandapplicationghatwe havepresentedn this
article illustrate the utility of randomsamplingin the evalua-
tion anddesignof very largecombinatorialibraries.* We have
consideredprimarily computationalfilters basedon three-
dimensionaldescriptorsalthoughothermetricsfor evaluating
products,suchastwo- or three-dimensionadliversity or even
scoresrom dockingcalculationscould be usedaswell. How-
ever,three-dimensionalescriptorgequirea completeconfor-
mationalmodel of eachcompoundanalyzedand, as a result,
areamongthe mostcomputationallyambitiouscalculationsin
combinatoriallibrary design.Thus, the statisticaltechniques
outlinedhereallow the applicationof very complicatednodels
to extremelylarge combinatoriallibraries.
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