
Automatic Generation and Testing of Un-Rolls for
Profitable Technical Trades

John Mount∗

September 9, 2007

1 Introduction

In this paper we discuss some of the basic steps in developing successful technical
trading strategies. The method involves identifying an inefficiency or irregularity in
the market and then using rigorous statistical methods to track and exploit this single
feature of the market. We show how to automatically generate and test optimal un-
rolls or trades that undo (at a profit) automatically triggered technical trades. That
is to say, if the first half of technical trade is specified we show how to find the other
half.

Our technique is to use standard tools, such as kernel methods[8] and Markov
chains[4], to model both the efficient and the inefficient portions of the US stock
markets.[6]

The author traded profitably using some of these techniques while part of a
program trading desk at Banc of America Securities.

2 Technical Trading

Technical trading is a popular universe of security-trading strategies that trade
using only the so-called technical data which are price graphs, volumes, bid/ask
books and other data commonly available in market feeds.1 Input sources can also
include external triggers based on news, RSS feeds, on-line information and corporate
announcements.2 These strategies are very attractive in that that are quantifiable,

∗http://www.mzlabs.com/
0This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

1To emphasize; by technical trades we mean trades based on market data (as opposed to
fundamental analysis) we do not include popular culture uses of the term such as candlesticks,
Eliot waves and so on.

2We are assuming that these triggers can be made automatic by using a labeled information
service or natural language processing techniques.

1

easy to implement and easy to back-test on historic data. A major weakness of
technical trading strategies is that they ignore deeper knowledge or analysis of the
companies that are behind the securities being traded. Systems of technical trading
are used both by large sophisticated hedge funds and by a varying population of
day-traders.

Typical technical variables include price, time, volume and moving averages. It
is important to know that many of these variables are really just analogies and not
essential features of the market. For example: none of the variables current price,
time, velocity, acceleration or inertia are real market quantities. What is traditionally
called current price is actually the price of the last trade, which is in the past and
may or may not ever be seen again. The fundamental variables of state of US stock
markets are bid (best purchase price and quantity currently offered), ask (best sale
price and quantity currently offered), and last trade (price and quantity). Each change
of these variables is called a tick and can happen at any time. More detailed views
include detailed bid and ask books from multiple market participants and estimates
of inventory imbalance of various market makers and specialists.

In addition to working with the proper variables a sound strategy must also have at
least two important components that we call foundation and empirical correctness.
Without these components there is a large danger self-delusion and an unreliable
strategy.

By foundation we mean that there are a priori reasons to believe that some
variation of the strategy should be profitable. By ignoring the nature of the companies
underling the securities being traded technical trading starts on shaky ground. In fact
it is tempting to appeal to an efficient market hypothesis and claim that no technical
trading strategy should be profitable. In some sense this is true- trades made in true
ignorance expose a trader to significant risk, trading costs and pointless payment of
the so-called bid-ask gap. Founded technical trading strategies are based on violations
of the efficient market hypothesis- identifying situations where the market is in fact
not efficient and trading into these situations. If there is no reason to suspect a market
inefficiency there really is no reason to perform a technical trade. Testing numerous
un-founded trading strategies is more likely to discover irrelevant anomalies in past
data or discover flaws in one’s statistical procedures than it is likely to discover new
valuable trading rules.[3]

Possible market irregularities include (but are not limited to):

• Market Open

• External News

• Earnings Reports

• M&A news

• Unusual Volume

• Inferred state of Market Maker / Specialist state

2

• Detailed Bid/Ask book.

By empirical correctness we mean that strategy can be validated and proven on
historic market data. A technical strategy can have as much mathematical pedigree
as you like, but it does not make sense if it can not be mechanically implemented and
proven on historic data. Many technical features are popular due to their familiarity
or the quality of graphs they produce- but the true measure is how well strategies
generate specific executable actions and the quantified outcomes of those actions.

Given an irregularity it remains to develop the trading strategy. Typically
this involves an initial trade (a buy or a sell) triggered by evidence of the
irregularity/inefficiency followed somewhat later by a reversal or un-rolling of the
trade (selling back against an initial buy or buying back against an initial sell). If
markets were perfectly efficient and instantaneous in incorporating external events
this should not work- so it is important to test that there really is a repeatable
market inefficacy.

Possible initial trading strategies could include:

• Selling stock into an unusual price spike (a contrarian strategy).

• Buying stock immediately on news (a superior connection strategy).

• Selling stock into a perceived specialist imbalance (a superior knowledge
strategy).

It would be naive to expect that a strategy that starts on a trigger and then
reverses its trade blindly (say some fixed time after the trigger) is fully efficient.
We must assume that other players in the market have seen effects of the trigger
we traded and that their actions introduce biases and uncertainty into the market.
Modeling these effects will allow us to produce a systematic unrolling strategy that
can complete any entry strategy into a complete round-trip system. This systematic
unrolling strategy is the subject of this writeup.

3 First Model

3.1 The Efficient Market Hypothesis

The efficient market hypothesis is a useful tool, even when you are attempting to find
inefficient market situations. It represents the baseline you feel you have found a useful
deviation from. The efficient market hypothesis has many variants but the essential
content is that the market is full of informed players so any information is already
factored in to the price. For example if there is publicly available information that
gives a reasonable expectation that a stock should rise in the future then informed
investors would purchase the stock early to be in a position to benefit from this
increase. These purchases actually cause their own price-increase (by the simple laws
of supply and demand) and have the effect of reducing the value of the information-
as they move the price increase back in time (from the expected future change in

3

value to the time of the anticipatory buying). This is what is meant by the phrase
“already factored in.”

Figure 1: Dell 10-13-2006 Tick Data.

There is a mathematical concept that captures the idea of already factored in:
Martingales. The Martingale condition is a concept that says the expected future
value is the current value. For example betting a dollar on the flip of a fair coin is
a Martingale of value $0 (the odds of winning and losing a dollar balance out). The
future value may be higher or lower- but when the Martingale condition is met the
average of all these value weighted by their likelihood of occurrence is equal to the
current value. The already factored in example mentioned above shows how the many
players in the market tend to establish a near-Martingale by trading in such a way
to move the current price to be the expected value of the future price.

If market prices were the sum of many individual traders each with bounded-
budgets who traded independently then we could apply the central limit theorem or
law of large numbers and say that the market is indeed a random walk like the famous
Brownian motion from physics. In fact on first inspection the market price histories
(as in Figure 1) indeed look very similar to graphs generated by such a random process
(as in Figure 2).

As we have said: it is no coincidence that the market looks nearly like a Brownian
motion. Informed trading effects tend to impart Martingale like tendencies (once the
overall increase factor of the value of holding wealth is factored out). Also, if the

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

time

ra
nd

om
 w

al
k

pr
ic

e

Figure 2: Graph of a market-like random walk.

variance of the market were much larger than that of a similar Brownian motion this
would itself attract channel traders who would benefit by trading in and out of the
excess wiggling. The point is that an efficient market is usually pretty well described
by random processes that have the Martingale property (like Brownian motions or
Markov chains), so these are appropriate modeling tools.

If the market process really were such a random walk than there would be little
point in technical trading. The whole theory of Martingales was developed to precisely
describe situations where bets based on collecting historic information can not work.
This is often called the no gambling system principle and it can be actually proven
for systems like Martingales, unbiased Markov chains, drift-free Brownian motion
and was even used as an foundational concept to define randomness by von Mises.[7]
However, traders have a large number of pervasive dependencies. Dependencies can
be shared information, herd mentality or shared trading practices. There are also
some traders with very large budgets, so the conditions commonly needed to apply
the law of large numbers do not apply and it is not inevitable that the market is indeed

5

a Brownian motion. In fact one can show that even though the market overall looks
very much like a Brownian motion it has too many events that would be considered
very rare in this model (crashes, run-ups, events correlated in time) to have plausibly
been generated by such a model.

3.2 Exploiting Inefficiency

A basic rule of thumb is: without a good reason to believe contrary you are not too
far off assuming the market is efficient. So we decided to model the morning market
as being nearly memoryless. That is we modeled it as if future prices depend only
on the most recent price and not on the detailed history of prices. We will, however,
condition the model on the bias introduced by the presence initial trade trigger.

The most basic memoryless model is the Markov Chain. In this model the world
has finite number of situations called states. For example we could say the stock
price being near each a number of price differences from the previous day’s close is
a state. We could take our states to be: +0.50%, +0.50%, +0.25%, 0.00%, 0.25%,
−0.50%. If our strategy involved an end of day sale followed by a next-day buy-
back then knowing which state we are in allows us to assign a value to buying back
the stock while in that state. This would be the negative of the relative change in
stock price (price decreases work for us) times the value of the stock sold the day
before (minus trading costs). If we modeled round-trip trading costs as $20.00 and
assume our triggered trade purchased a total value of $46, 000 of Dell then we could
map buying back in each possible state to a net dollar value of the round trip. For
instance buying back in the state +0.50% would represent a net-loss of $250. We
actually want to make the states a bit more detailed by adding a notion of time. If
we modeled time in 5-minute intervals and (for the sake of diagram clarity) assumed
that we only move up or down one state-level the Markov that modeled the first 15
minutes of the market could be represented in a diagram as in Figure 3.

Each circle represents a state and each arrow represents a transition from state
to state. We would use historic market data to find for every stock in this situation
the relative frequency each transition is taken. For instance we would measure in
our historic data what fraction of the time a stock that is 5 minutes and in the
+0.25% state moves to the +0.50% state at the 10 minute mark. These learned state
transition probabilities can be made to depend on factors from the previous day close
(% increase, volume, market-capitalization) . In the diagram we are going to assume
all transitions are equally likely except for the arrows with square bases which we
each take to be twice as likely as each regular arrow leaving the same state. The
success of our strategy depends on finding situations where our model predicts these
sort of advantageous asymmetric conditions. Without these asymmetries (greater
net propensity for price decrease than for price increase) we would be in a gambling
situation where no strategy could possibly have net-positive value.

The diagram also encodes another assumption of the problem- we have a deadline
for buying back the stock. In this case the diagram indicates a forced buy-back at
time +15 minutes if a buy-back has not been made before that time. In reality many
more levels and many more time intervals are modeled. Also note we have made

6

-$250

-$135

-$20

$95

$210

Previous day
sell price

Market
open +5 min. +10 min. +15 min.

+0.50%

+0.25%

same

-0.25%

-0.50%

Figure 3: Markov Chain Model

the top row (representing maximal loss) absorbing. This is introducing a deliberate
pessimistic flaw into the model (or equivalently adds a stop-loss condition to the
strategy). We do not want the maximal loss states to have a reflected barrier (like
the maximal profit states do) as this would make the model overly optimistic. Instead
we force the model to be pessimistic and chose enough levels so that the maximum
loss bound is not often achieved and therefor does not have large effect on the model.

What we want to know is the net-value of being short (having sold) the stock the
evening before. This is represented by the left-most circle which does not yet have a
known value. The value of this state depends both on the transition odds of the states
and on the trading strategy used to buy back the stock. There is, for example, no value
in reaching the price-drop states if our strategy doesn’t take advantage and buy back
while in these states. So the value of the states depends both on the uncertain future
behavior of the market and of the currently unspecified buy-back strategy. The neat
thing about this sort of diagram and treatment is that the forced-liquidation states
at the end make it possible to simultaneously find the optimal trading strategy and
assign values to all of the states. For example in the next diagram we see that the
value of allowing the middle state at +10 minutes to ride (i.e. waiting instead of
buying the stock back at this time) is equal to the properly weighted average of the
ending states it connects to, in this case: 1

4
(−$135) + 1

4
(−$20) + 1

2
$95 = $8.75. The

value of buying-back in this states is −$20 so the optimal strategy is to take our

7

$8.75

-$250

-$135

-$20

$95

$210

Value of
round trip

Market
open +5 min. +10 min. +15 min.

+0.50%

+0.25%

same

-0.25%

-0.50%

Figure 4: Valuing Interior States

chances in the next time interval (see Figure 4).
We can repeat this sort of argument for each state in the second to last column

and determine the net-value of each state under the optimal trading strategy. States
whose optimal strategy is to stop (perform the buy-back immediately) are indicated
by not having any outgoing arrows (see Figure 5).

The procedure moves from right to left using known states to fill in decisions and
values for unknown states. In fact the calculation is so simple and orderly we can
encode the entire filling-in procedure in a spreadsheet table:

column A column B column C column D
row 1 = D1 = D1 = D1 −$250
row 2 = max(D2, (B1 + B2 + B3)/3) = max(D2, (C1 + C2 + C3)/3) = max(D2, (D1 + D2 + D3)/3) −$135
row 3 = max(D3, (B2 + B3 + 2 ∗ B4)/4) = max(D3, (C2 + C3 + 2 ∗ C4)/4) = max(D3, (D2 + D3 + 2 ∗ D4)/4) −$20
row 4 = max(D4, (B3 + B4 + 2 ∗ B5)/4) = max(D4, (C3 + C4 + 2 ∗ C5)/4) = max(D4, (D3 + D4 + 2 ∗ D5)/4) $95
row 5 = max(D5, (B4 + B5)/2) = max(D5, (C4 + C5)/2) = max(D5, (D4 + D5)/2) $210

.

This is in fact the same type dynamic programming[1] method used to value
options under the binomial model.

The completed diagram is shown in Figure 6.
For our (made up) example the net-value of round trip trade is an expected value

$7.47 profit.
What remains is to choose a set of conditions to base a model estimates on. We

then only trade situations that have an acceptable predicted risk and reward profile.
To build the state transition models we collect all the historic trade data and then

segregate it into groups of data that match each possible trigger condition we wish to

8

-$250

-$135

$8.75

$123.75

$210

-$250

-$135

-$20

$95

$210

Value of
round trip

Market
open +5 min. +10 min. +15 min.

+0.50%

+0.25%

same

-0.25%

-0.50%

Figure 5: Propagating the Valuation

use to help bias our system. There is a trade-off: the more detailed the list of trigger
conditions the more powerful biases we can detect (things are less smeared together)
but we have less data available for each possible combination of conditions and lower
reliability in modeling. To address this we advocate using non-parametric or kernel
methods here to average data that nearly fits the conditions to get estimates that are
both detailed and reliable.

For example our estimate is of the form:

P (s1 → s2) ≈
∑

training−example wt(training − example, s1)P (s1 → s2|training − example, s1)∑
training−example wt(training − example, s1)P (s1|training − example)

A usable wt(training − example, s1) can be gotten from the law of conditional
probability (P (A, B) = P (A)P (B|A)), so we use P (training − example, s1) =
P (s1|training − example)P (training − example). Under empirical re-sampling
each training example is treated as equally likely (more common situations are
accounted by the fact they yield more examples in the training set) so we can use
wt(training − example, s1) = P (s1|training − example).

For P (s1 → s2|training−example) we can just estimate the frequency of when we
are in a stateA near s1 how often do we see a next-state stateB such that stateB/stateA
is approximately s− 2/s− 1.

9

$45.29

-$250

-$115.0

$147.11

$210

-$250

$30.31

-$125.4

$138.13

$210

-$250

-$135

$8.75

$123.75

$210

-$250

-$135

-$20

$95

$210

$7.47

Value of
round trip

Market
open +5 min. +10 min. +15 min.

+0.50%

+0.25%

same

-0.25%

-0.50%

Figure 6: Complete Valuation

For both of these estimates is pays to blur things a bit during the estimation
procedure replacing sums of the form:

Econdition(x)=true[f(x)] =

∑
condition(x)=true f(x)∑
condition(x)=true 1

with softer forms like:

Econdition(x)=true[f(x)] ≈
∑

x e−λviolation(x)f(x)∑
x e−λviolation(x)

.

4 A Second Model

One thing we one might want is to use a much more detailed model of time. One way
to do this is just to add more time-states to the model. This can cause problems as
we now have many more transition probabilities to estimate.3 Suppose we wanted to
switch our model from being indexed by time to being indexed by tick. Bid, Ask and
Trade ticks can happen at any time and any rate so even with a trading deadline,

3The explosion of states can be managed by adding some regularity conditions on how transition
probability estimates are allowed to change over time. This serves to reduce the complexity or rank
of the estimation problem and improves the generalization ability of the model.

10

so there is uncertainty in how many more ticks there are before the trade deadline.
We can work at the tick level (without introducing too many states) by introducing
a new model that has cycles in the arrow diagram (see Figure 7).

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

c1

c2

c3

c4

c5

-$250

-$135

-$20

$95

$210

V

Value of
round trip

Market
open +5 min. +10 min. +15 min.

+0.50%

+0.25%

same

-0.25%

-0.50%

Figure 7: Recurrent Model (With Cycles)

The short vertical arrows represent the odds of moving from price-state to price-
state in the same time column. The left to right dotted arrows represent the odds of
being the tick that moves to the next time column. We can now estimate the transition
odds from a great quantity of per-tick data giving us very reliable transition odds.
We would like to fill in the values of all the states of this model (like we did in the
earlier diagrams)- but the fill-in procedure will not work in the presence of cycles.
States we need to fill in our given state do not yet have known values because they
themselves depend on the state we are trying to value.

4.1 Linear Program Treatment

The standard way to deal with unknown quantities that simultaneously depend on
each other is to introduce variables and write down a set of simultaneous inequalities.

If we introduce the variables v, a1 · · · a5, b1 · · · b5 and c1 · · · c5 to represent all of
the unknown values in our last diagram we can quickly write down many relations
we know to be true for them.

For example for the set of variables c1 through c5 we know that each state is worth
at lest as much as the value of stopping in that state. This can be written as:

11

c1 ≥ −$250

c2 ≥ −$135

c3 ≥ −$20

c4 ≥ $95

c5 ≥ $210

.

Each state (except deadline and stop-loss states) is also worth at least the expected
value of continuing one more step, which can be written as:

c2 ≥ p(c2 → c2)c2 + p(c2 → c1)c1 + p(c2 → c3)c3 + p(c2 escape)(−$135)

c3 ≥ p(c3 → c3)c3 + p(c3 → c2)c2 + p(c3 → c4)c4 + p(c3 escape)(−$20)

c4 ≥ p(c4 → c4)c4 + p(c4 → c3)c3 + p(c4 → c5)c5 + p(c4 escape)$95

c5 ≥ p(c5 → c5)c5 + p(c5 → c4)c4 + p(c5 escape)$210

.

This can be re-written into matrix form where we have

A =



1
1

1
1

1
−P (c2 → c1) 1− P (c2 → c2) −P (c2 → c3)

−P (c3 → c2) 1− P (c3 → c3) −P (c3 → c4)
−P (c4 → c3) 1− P (c4 → c4) −P (c4 → c5)

−P (c5 → c4) 1− P (c5 → c5)


,

b =



−$250
−$135
−$20
$95
$210

P (c2 escape)(−$135)
P (c3 escape)(−$20)

P (c4 escape)$95
P (c5 escape)$210


and our vector of unknowns is

x =


c1

c2

c3

c4

c5

 .

12

In matrix form we say Ax ≥ b. We are assuming we have estimates for all of the
entries of A and b- so the only unknowns are the entries of x. If these were equalities
(instead of inequalities) we would call this a set of simultaneous equations and we
could use linear algebra to solve for the unknown values. Because they are inequalities
we will have to instead solve what is known as a linear program.[5] It turns out the
optimal values for c1, · · · c5 are given by solving:

min 1 · x s.t.Ax ≥ b.

This has an admittedly strange form (the objective condition min 1 ·x seems very
arbitrary and one would at first think the likely form is max p ·x where p is the vector
probabilities of getting into each c-state). There is also the issue that we merely wrote
down inequalities that we knew would be true for the optimal solution to the stopping
problem, but we have not guaranteed that there are not more conditions we have not
thought of (i.e. these conditions are necessary, but we have not yet established that
they are sufficient).

We show (in the appendix) that this is in fact the right procedure for solving for
all of the c-values. Each of these linear programs can be quickly solved using standard
software. We can also see that the same type of procedure can then be applied to the
b-values (which depend only on c-values, which are by this point known). In fact we
can substitute back (using linear programs instead of filling-in) until we know v the
expected value (under the model) of the entire round-trip trade.

4.2 More on the Transition Probability Estimate

We can augment our state to carry more information that just the current ask-price
relative to our previous nights sale

If we are in stage − b of our Markov model we can modify wt(training −
example, s1) to be: P (s1|training − example)P (training − example|todays stage−
a move summary) (to do this we build an estimated transition matrix for
stage − a from only the trajectory of todays stock and then evaluate how likely
the trajectory the training example from the past is under this model, much
smoothing/blurring is required to make this calculation usable). Even better: we
can group training data and use Bayes law: P (training − group|todays stage −
a move summary) = P (todays stage − a move summary|training −
group)P (training − group)/P (todays stage− a move summary)

This allows us to group the training examples (on a few criteria, like less than
a month old or not, trading volume, volatility ...) and use a group of examples to
build a model to evaluate todays moves against (aggregated data to form model to
check todays single trajectory). As is traditional in Bayes estimates we ignore the
denominator as it does not vary as a function of training group.

13

5 Conclusion

We have demonstrated some of the methods of using standard statistical and
optimization techniques to automatically generate and back-test un-roll trades that
turn properly conditioned technical trades into profitable round-trip trades. What we
have presented is the technical machinery for building the second half of a profitable
trade pair where the first half is some technical signal such as price or a market
external trigger.

References

[1] Bellman, R. Dynamic Programming. Dover Publications, 2003.

[2] Breiman, L. Stopping Rule Problems. John Wiley & sons, 1964, ch. Applied
Combinatorial Mathematics.

[3] Ioannids, J. P. A. Why most published research findings are false. PLOS
Medicine 2, 8 (Aug 2005), 0697–0701.

[4] Kemeny, J. G., and Snell, J. L. Finite Markov Chains. Springer, 1960.

[5] Schrijver, A. Theory of Linear and Integer Programming. John Wiley & sons,
1986.

[6] Sharpe, W., Alexander, G. J., and Bailly, J. W. Investments, 6 ed.
Prentice Hall, 1998.

[7] von Mises, R. Probability, Statistics and Truth. Dover Publications, 1981.

[8] Wasserman, L. All of Nonparametric Statistics. Springer, 2006.

APPENDIX

A Why the Linear Program Solution is Correct

How do we know the linear program solves the original problem?

• Because there are a lot of formulas?

• Linear program looks kind-of right?

• Works on a few examples?

To actually prove correctness we need to derive and compare to some
representations of the optimal solution. All of the inequalities we wrote must be
true for the optimal solution- but we have no prior guarantee that these are the only
conditions. Their could be additional conditions that we forgot to model.

14

Breiman[2] presented a clever argument technique that exploits the particularly
nice structure of solutions of this problem. He noticed that solutions have both
a lattice like structure (you can combine solutions by taking minimums) and an
operator structure (applying the probability transition matrix and stopping rules to
a solution yields a solution). It turns out this is too much well behaved structure
for any non-trivial solution set to have and it lets us show that optimal solutions are
essentially unique which in turn lets us show the linear program solution solves the
actual trading problem.

Theorem 1. Assume that every state in the Markov chain has a path to a forced
stopping state. Let T be a maximal optimal set of stopping nodes and define the
vector t such that ti = E[stopping value under T rules | started at i]. Let x be an
optimal feasible solution to the linear program:

min 1 · x
x ≥ stop

(I − P)x ≥ 0

where I is the identity matrix, P is the matrix of transition odds of the Markov chain
and stop is the vector of stopping values.

Then x = t.

The theorem says if t is an optimal solution for the original valuation problem (that
we may or may not know how to calculate) and x is an optimal feasible solution to
the linear program (which is now written in a slightly different but equivalent form)
then x = t. So, as hoped, solving the linear program is equivalent to solving the
original stopping problem. The extra condition of every state being able to eventual
reach a forced stopping state is true in our formulation due to the trading deadline.

The proof gets a little involved but the essential ideas are as follows:

• Check an optimal stopping solution would obey the linear program inequalities
(so they are necessary, still need to show they are sufficient).

• Show that the linear program solution even if it did differ from the optimal
stopping solution can not be less than the optimal stopping solution in any
coordinate (this is the lattice minimum step).

• Use the fact that every state has a path to a forced stopping state to show that
the linear programing solution can not hide any excess value above best possible
stopping value away from the rest of the system (this is the operator step).

Proof of Theorem 1. The theory of linear programming duality says that there is a
dual problem to our linear program and this dual is: max u · stop where

u, v ≥ 0

(uv)A = c.

15

The point of the dual is it is known that for all x, u, v feasible we have u · stop ≤ c ·x.
And for optimal x, u, v we have u · stop = c · x.

Take x, u, v as an optimal solution to the linear program and the dual.
One can check t itself must obey all of the conditions of the linear program so

duality theory tells us u · stop ≤ c · t.
Define a vector z such that zi = min(xi, ti). z also obeys the primal linear program

inequalities, so we know u · stop ≤ c · z. Now u · stop = c · t so we have c · t ≤ c · z.
Each entry of c is 1 and zi ≤ ti for all i which can only mean that z = t. This means
entry by entry we have xi ≥ ti.

Now define the vector function F () such that F (w)i = max(stopi,
∑

j P (i→ j)wj).
For the true solution t we have F (t) = t. The linear program solution x also has
F (x) = x. Now if we suppose x 6= t then there exists an i such that xi− ti is maximal
and state i points to at least one state j such that xi − ti > xj − tj. This must be
true because none of these maximal difference states can be forced stopping states.
So some maximal difference state must have a transition to a non maximal difference,
otherwise this would violate the fact that all states have eventual paths to forced
stopping states (where xk − tk = 0). For this particular i we claimed xi > ti ≥ stopi
so we have:

(F (x)− F (t))i =

{ ∑
j P (i→ j)xj − stopi if

∑
j P (i→ j)tj < stopi∑

j P (i→ j)(xj − tj) otherwise
.

So either way we have for this particular i: (F (x)−F (t))i ≤
∑

j P (i→ j)(xj−tj). But
we must have

∑
j P (i→ j)(xj−tj) < xi−ti because

∑
j P (i→ j) = 1, xj−tj ≤ xi−ti

for all j and xj− tj < xi− ti for at least one j. So (F (x)−F (t))i < xi− ti and we see
F () is essentially a contraction on the segment between t and x. Since a contraction
on a bounded interval can not have two distinct fixed points our supposition that
x 6= t is untenable and we know x = t.

We are done- we have shown there is essentially only one optimal solution to the
stopping problem (the only possible variation is rules that differ in what they do for
states-i such that

∑
j P (i→ j)tj = stopi). We also should by now have some insight

as to why we used a linear program like min 1 · x s.t. Ax ≥ b: the linear program is
solving for the minimum value at each state that does not dip below the expected
value of neighboring states.

16

