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The useof combinatorialchemistryhasbecomecommonplacewithin the pharmaceuticalindustry. Less
widespreadbut gainingin popularity is the derivationof activity modelsfrom the high-throughputassays
of theselibraries.Suchmodelsarethenusedasfilters during the designof refineddaughterlibraries.The
designof thesesecondgenerationlibraries,which efficiently testandconformto thederivedactivity model
from the largespaceof virtual possibilities,remainsan areaof considerableresearch.We presentherea
computationallyefficientmethodfor thedesignof optimallydense(in modelmatchingcompounds)synthetic
matricesfrom in silico virtual libraries.

INTRODUCTION

Combinatorialchemistry1-3 is increasinglybeingusedby
thepharmaceuticalindustryasa powerful tool to speedthe
processof drugdiscoveryandoptimization.4-7 This technol-
ogy has also profoundly reshapedthe opportunitiesfor
computationalinput duringdrugdiscoveryandleadoptimi-
zationefforts.Theapplicationof computationalmethodshas
quickly expandedfrom suggestionsfor tensof compounds,
as might come from structurebaseddesign,to thousands
and eventensof thousandsof compounds,in the form of
combinatoriallibrary designs.Theneedto proposethousands
of compoundsfor synthesisandscreeninghasdemandedthe
developmentor extensionof severalcomputationaldesign
techniquessuchasdiversity,4,6 informativedesign,8 cluster-
ing,9 docking,10-12 and3-D searching.4,6,13

The useof an activity modelasa computationalfilter is
an exampleof a computationalmethodologywhich is still
evolvingto meettheneedsof combinatorialchemistry.This
techniquewasoriginally appliedto smallsetsof compounds,
and it hasbeenusedsuccessfullyto identify a numberof
novelinhibitor classes.14-18 Suchmodelsattemptto represent
what is known,suspected,or might be inferredaboutwhat
is necessaryfor activity againstaspecifictarget.An activity
model may be created in many different ways using
pharmacophores,excludedvolumes,key features,or even
crystallographicdata.Indeed,therearemanycommercialand
proprietarysoftwarepackagesdevotedto just thistask.19-21

However,two obstaclesremainwith the extensionof this
techniqueto thedesignof syntheticcombinatoriallibraries.

The first obstaclecomesfrom the applicationof these
filters to extremelylargenumbersof compounds.Activity
models,which weredevelopedto operateon smallnumbers
of compounds,mustnowdealwith theexplosionin product
space that is inherent in any combinatorial chemistry
approach.For example,a combinatoriallibrary createdby
peptidebondformationhasa potentialsizeof morethan25
million productsif only the>5000acidsand>5000amines
from theAvailableChemicalsDirectory(ACD) areconsid-
ered.Fromthis library of ∼25million only a relativelysmall

numberof compoundscan be synthesized,usually in the
rangeof ∼1000 or less. It is this choice of which 1000
compoundsto make(from the 25 million sourcepool) that
computationalmethodsaddress.The developmentof less
complexcomputationalfilters hasbeennecessaryto address
this problem.A numberof both academicandcommercial
programshave beendevelopedrecentlywhich attemptto
solvethis problemusingvariousapproaches.22-24

The secondobstaclecomesfrom the experimentalcon-
straintsof combinatorialsynthesis.Insteadof selectingone,
two, or ahandfulof compoundsfor synthesis,computational
methodsnow haveto selecta largersetof compoundsfor
matrix synthesis.Syntheticcombinatoriallibrariesaregener-
ally designedwith limits on both the total number of
compoundssynthesized(usuallyasetof 96-well plates)and
on thenumberof monomersused.All productsin a row or
columnof the platecontainthe samemonomer;this is the
essenceof the term “matrix constraint”. This constraint
typically operatesdownstreamof anactivity model(Figure
1). Thatis, evenwhenanactivity filter is appliedto avirtual
combinatoriallibrary, unlessthefilter is very stringent,one
is still left with many more compoundsthan can be
synthesized.It is a very challengingcomputationalproblem
to determinewhich subsetof these compoundsis both
optimally densein “model-matching”compoundsandame-
nableto the experimentalmatrix constraints.

One note of caution is that the useof matrix synthesis
and activity modelsmay greatly sacrifice the diversity of
theresultantsyntheticlibrary. If “one-off” compoundswere
made insteadof a matrix synthesis,the library could be

Figure 1. Schematicrepresentationof thestepsinvolvedin creating
a syntheticmatrix library from a virtual library.
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“cherrypicked” from theidentifiedcompounds(modelfitting
or otherwise).Additionally, adiversitymetriccouldbeused
to ensureselectionof a maximallydiverseset.Thebenefits
of sucha library needto be weighedagainstthe possible
difficulties of one-off synthesisand the greatly increased
numberof reagentsnecessary.Computationalschemesthat
arenot dependentuponexplicitly testingeachmemberof a
library, suchasgeneticalgorithms25 or simulatedannealing,7

have beendevelopedandusedwith goodresultsfor synthesis
not held to matrix constraints.

Figure1 depictsthetwo separatechallengesoutlinedhere.
The first is filtering/testing the virtual library againstthe
activity model.The secondis the subjectof this paperand
is thematrixdesignof asyntheticlibrary which is maximally
densein model-matchingcompounds.Wepresenthereresults
from two solutions to the problem of designinga small
combinatorialmatrix from a much larger sourcepool of
productsof acombinatorialreaction.Thefirst, abranchand
boundtechnique,is themorerigorousbut becomescompu-
tationally intractableevenwith moderatelysizedlibraries.
To overcomethis problem,we also presenta “cut-down”
approximationto the branchandboundsolutionandshow
that the results,with respectto a real combinatoriallibrary
and activity model, closely approximatethat of the true
solution.

METHODOLOGY

Matrix Constraints. A syntheticcombinatorialmatrix is
composedof products(Pxy) which have beenformedfrom
monomers(Rx andCy). An exampleof a genericcombina-
torial matrix is shownin Figure2. The productsof sucha
matrixcanbetestedagainstaderivedactivity model,giving
eachindividualcompoundabinarymatchingor not-matching
score.Looking at a combinatorialmatrix such as that in
Figure2 revealsthenecessityof designingin monomerspace
(R1 to Rx, and C1 to Cy) to obtain a productspace(P11 to
Pxy) of interest.That is to say,only by carefulselectionof
monomerscanthecompetingdesigncriteriaof library size
andpercentageof model-matchingproductsbe balanced.

Designingsmallsyntheticmatrix librariesfrom thespace
of all possibleproductsfor a combinatorialreaction,when
reducedto its simplestform, canbethoughtof asaproblem
of cliquedetection.26 Thecombinatorialmatrix, oncetested
againstthemodelof interest,becomesasparsebinarymatrix
(i.e. composedof only 1’s and0’s) with the 1’scorrespond-
ing to themodel-fittingcompoundsandthe 0’scompounds
that do not fit the model.Finding a maximally dense(i.e.
containingthemost1’s) submatrixin sucha systemcanbe
done using a branch and bound algorithm.27 We have
implementedthis relativelyexpensivesolutionanduseit for
comparisonto our more approximatebut computationally
moreexpedientcut-downmethod,describedlater.

Branch and Bound. Given a sparsematrix asa starting
point, the branchandboundalgorithmselectswhich rows
andcolumnsto includein a final, maximallydensesubma-
trix. The choiceof including any particularrow or column
can be thought of as a “branch”, and the exclusionas a
“bound”. In thelimit of no bounds,all possiblesubmatrices
areconsidered(guaranteeingbothagoodresultandhorrible
run time). During theselectionprocessthis algorithmoften
reconsidersits decisions(branches)by consideringa bound
heuristic.The boundheuristic is a routine that looks at a
currentselectionof rowsandcolumnsandreturnsanupper
boundon how densea completesolutionof which theycan
possiblybeapart.Thus,asis oftenthecase,whenthebranch
andboundalgorithmhasfoundagoodtentativesolutionand
a new partial solutionbeinginvestigatedturnsout (by way
of the bound) to haveno chanceof being any better, the
searchis curtailed.As long astheboundreturnedis correct,
thealgorithmstill finds anoptimalsolution.If theboundis
not alwayscorrect(andis merelyheuristicin nature),then
the branchandboundalgorithmmay returna solutionthat
is not the bestpossible.

A trivially correctbound is to alwaysassumethat any
partial selectionof rows andcolumnscanbe extendedinto
amatrixof density1. An exampleof thiswouldbeto assume
that a given 3 × 3 matrix which contained2 desirable
productscould be extendedinto a 5 × 5 matrix which
contained25 desirableproducts.This is patentlyfalse.This
bound,while possible,is not particularlyusefulasit never
allows the branchand boundalgorithm to skip any of its
search.A slightly morerealisticboundis givenby assuming
we can add perfect rows and columnsto any matrix. An
examplewould beto assumeany3 × 3 matrix containing2
desirableproductscan be extendedinto a 5 × 5 matrix
containing5 × 5 - 3 × 3 + 2 ) 18 desiredproducts.This
would alsobe correct,yet very inefficient. So, in addition
to beingcorrectwe wish for our boundsto betight. That is,
we would like correctboundsthat tend to be small. One
way to do this would be to use a searchto find which
completesolutionsa partial selectionof rows andcolumns
canbe expandedinto. However,this involvesjust asmuch
work as the branch and bound algorithm itself. When
confronting such an intractable problem, the traditional
approachis, insteadof solvingtheproblemathand,to solve
a different problemthat hasbeenchosento be easierand
quickerto solve.This techniqueis calledarelaxation.Below
we describethe relaxationwe employedin our cut-down
method.

Relaxation of the Problem. Our original problemis to
selectan actualsmall matrix (for synthesis)from a larger
matrix (of potential products).Any such matrix can be
describedas the intersectionof a setof rows andcolumns
from the original largermatrix. For eachrow we reservea
variableR (i.e. R1, R2, ..., Rx). We restrict the Ri to be zero
or one.Whenrow I (which, remember,denotesa monomer
selection)hasbeenselectedfor synthesis,we recordthis by
settingRi to 1; if row I hasnot beenselected,we recordthis
by settingRi to 0. Similarly we reserveasetof variablesC1,
C2, ...,Cy to recordourcolumnselections.Wefurtherassume,
by simulatingthepossiblereactionsandscoringtheproduct
molecules,thatwe havereadyconstantPi,j suchthatPi,j has
beensetto 1 if we (in silico) like themoleculefoundin the
ith row and jth columnand0 otherwise.It is importantto

Figure 2. Products,Pxy, formedfrom monomersRx andCy, with
either model matching (1) or not (0). A successfuldetection
algorithmwill find the maximally densesubmatrixof 1’s.
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note the following: the R’s and C’s are variablesand the
P’s areconstant(determinedby our software).

In this notation we see that a library using m row
monomersand n column monomers(yielding m × n
products)is exactlya settingof the R andC variablessuch
that

(RememberRi andCj arerestrictedto eachbezeroor one.)
Thenumberof desiredmoleculespickedup in adesigngiven
by a particularsettingof the R andC variablesis thenjust

Only moleculesthatarein botha selectedrow andcolumn
(Ri * 0 andCj * 0) and“desired”(Pij * 0) contributeto the
sum.

This leavesus with the abstractproblemof, for a given
setof constantsP, finding settingsfor thevariablesR andC
thatmaximizethesum(2). To “relax” theproblem,wedrop
one or more of the constraints.This producesa bound
becauseanysolutionof theoriginalproblemis alsoasolution
to the relaxedone; the optimal valuecanonly go up. The
trick is to drop enoughconstraintsso that the problem
becomeseasy,but not so many that the bound becomes
meaninglesslylarge.

Our relaxedproblemwasto simply replacethecondition
that all Ri and Cj be each0 or 1 with that they be real
numbersin the range0-1 (i.e. we now allow fractional
valuessuchas 0.5). While solutionsto this mathematical
problemcanno longerbe interpretedasselectionsof rows
andcolumns,we canusethemasboundsin our branchand
boundsearch.This type of problem is called a quadratic
programandin thiscase(positivedefinite)is easyto solve.27

Graph Theory. An alternativein attemptingto find a
computationally less intensive solution to the synthetic
combinatoriallibrary designis to approachit in termsof
graphtheory.By graphwemeanacollectionof items(nodes)
thatarejoinedin pairs(edges).Foramatrix,wecanconsider
eachrow andeachcolumnof our possiblesynthesismatrix
asa node.If the compoundgiven by the pairing of a row
andcolumnis consideredgood,we includean edgein the
graph;otherwisewe do not (Figure3). In graphtermswe
wish to find a smallsetof nodesthathasa largernumberof
edgeswithin it. A graphwith thelargestpossiblenumberof
edges(onefor eachpair of nodes)is calleda “clique”. The
problemof finding acliquein a largergraphis called“clique
detection”andis awell-knownbutdifficult problem.28 While

our currentproblemis not to find a clique, it canbeshown
thatit differs only in unimportantdetails.Thatis, if one had
anefficientmethodfor finding densesubmatrices,wecould
usethis methodto find cliquesin graphs.Becauseof this
bidirectional relationship,and somesignificant notational
similarities, we considerour problemvery closely related
to clique detection,which is the literaturewe lookedto in
searchof solutions.26,27

Cut-Down Algorithm. Using thegraphtheoryapproach
asinspiration,we approximatetheexactsolutionby usinga
“cut-down” procedureinsteadof the selection,or “build-
up”, approachemployedin thebranchandboundtechnique.
The cut-downmethodis what is calleda greedymethod27

in that it eliminatesthe row or column that seemsmost
advantageousto remove and never revisits its decision.
Unfortunately,asbothcliquedetectionandnear-densematrix
detectionareboth NP-hard,thereis no guaranteethat such
a simplemethodwill find theoptimalsolution.However,it
is guaranteedthat the matrix returnedby this methodwill
be amenableto synthesis(having the specifiednumberof
rowsandcolumns)andwill beat leastasdenseastheinput
data.In fact, the output matrix will alwaysbe amongthe
mostdenseof all the matricesit considerson the way to a
solution.

Forsimplicity, thecut-downmethodwill bedescribedhere
asatwo-dimensionalproblem.Thealgorithmcanbeoutlined
asfollows:

(1) Define the desiredsyntheticmatrix dimensions.
(2) Examinethe matrix and determinea scorefor each

row andcolumn(i.e. monomer)in thematrix. Thescorein
its simplestform can be definedas the numberof model
fitting compoundspresentin the row or column.

(3) Beginning with the list of monomers(i.e. rows or
columns)furthestfrom the desiredlength,removethe row
(or column)which hasthe lowestscore.

(4) Recalculatethe score.
(5) Go back to step2 until the matrix is of the desired

size.
This methodis intuitively attractivesinceit corresponds

most closely to what would be done if the problemwere
presentedmanually.Benefitsof this algorithmincludethat
theresultantmatrix will necessarilyhave anoveralldensity
of model-matchingcompoundsgreaterthanor equalto that
of the initial matrix. Additionally, the methodcanaccom-
modaterectangulardesignsandis easilyextensibleto higher
ordermatricesandmorecomplexscoringfunctions.Finally,
this approachis intuitive and scaleswith the numberof
monomers.It is importantto notethattherecentlydeveloped
PLUMS algorithm29 describedat the Fifth International
Conferenceon ChemicalStructureshasseveralinteresting
similaritiesto themethodologydescribedhere,but remains
distinct. PLUMS is an interestingexampleof “convergent
evolution”,asmethodologicalproblemsareidentifiedthrough-
out the industrysimilar solutionsaredeveloped.31

A simpleexampleof thecut-downapproachis shownin
Figure4. The initial matrix A is shownwith the scoresfor
theindividual rowsandcolumnslisted.If thedesiredmatrix
size is 3 × 3 andthe initial matrix is 10 × 10, eitheraxis
may be examinedfirst as neither is further from the final
sizethantheother.After two rounds,oneof row elimination
and oneof columnelimination,matrix B is obtained.This
processis continued,resultingin matricesC, D, E, etc.,until

Figure 3. Binary matrix andits graphtheoryrepresentation.Each
noderepresentsa modelmatchingcompound(colored black)and
eachedgethemonomerrelationshipbetweenthatproductandother
model-matchingproducts.
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thefinal matrixJ is determined.Thedensityof model-fitting
compoundsin the original combinatorialmatrix was 5%,
while thefinal matrixcontainsadensityof 90%.Attempting
to optimizeby handthedensityof model-fittingcompounds
from even an extremely small 10 × 10 matrix is an
interesting academicexercise(left to the reader) which
quickly showsthe difficulty to be expectedasthe sizeand
dimensionalityof the problemincrease.

RESULTS/DISCUSSION

The resultsof applying the cut-downalgorithm to both
randommatricesand real combinatoriallibraries are sum-
marizedin Table1. Thefirst 12examplesarefor a randomly
generatedbinary matrix. This presentsa pessimalcasefor
cliquedetection;therandommatrixassumesno relationship
betweenrow andcolumncomponentsandtheproductresult.
This is not the casein a combinatorialmatrix containing
model-matchingcompounds,asparticularmonomers(rows
or columns)tendto beverycorrelatedwith “value” (model-
matching).That is to say,if P11 matchesanactivity model,
thenit is likely (throughthesimilarity hypothesis25) thatother
compoundsformed with R1 will also be model-matching.
The next 3 examplesin Table1 (13-15) arefor a generic
combinatoriallibrary (suchasaminesandacidsin anamide
bondformation)screenedagainstactivity modelsonanactive
project.Thelast3 combinatorialexamples(16-18)arefrom
a threecomponentdihydroisoquinilinonelibrary.30

In example1, given the randommatrix of initial size10
× 10 andinitial densityof 29%,a final “synthetic” matrix
sizeof 4 × 4 wassought.Thecut-downalgorithmwasable
to find a matrix which was 50% densein model fitting

compounds(8 out of 16). Thebranchandboundalgorithm
with polynomial refinementwasable to do slightly better,
finding a 62% densematrix (10 out of 16). For this small
test,bothmethodsperformednearlyequivalentlyandneither
wascomputationallyprohibitive.Thecut-downmethodtook
∼0.5sona largememoryPentium400MHz machine,while
the branchand bound algorithm took ∼1 s on the same
machine.

The remaining examples(2-12) on random matrices
comparethe behaviorof the branchand boundalgorithm
with that of the cut-down algorithm in caseswhere the
computationalexpenseof the branchandboundalgorithm
becomesmore significant. We present these results by
employingmatricesof different initial sizes,densities,and
desiredfinal sizes.It is apparentfrom examples1-12 that
for a randommatrix the cut-downmethodis ableto find a
densesubmatrixwithin 5-10%of thedensityfoundby the
morecomputationallyexpensivebranchandboundtechnique.
The differencesin computationalspeedbetweenthe algo-
rithmsbecomemoresignificantwith eitherincreasedinitial
library sizeor dimensionalityof theproblem.In example3,
thebranchandboundalgorithmtook∼7 min, 3 s to calculate
theresult,in contrastto thecut-downmethodwhich needed
only ∼0.5 s for the samesystemon an identical400 MHz
Pentium.A more stark exampleis the 500 × 500 matrix
(example10) in which thebranchandboundalgorithmtook
severalhours to determineits result, while the cut-down
algorithmonly required∼1.4s.Examples11and12contrast
the methodologiesperformancefor larger systems.In the
caseof the5000× 5000arraywe wereunableto calculate
the branchandboundresultwithin a reasonabletime (<1
week).The 1000× 1000 array took severaldaysof CPU
time(Pentium400MHz) for thebranchandboundalgorithm
ascomparedto the ∼2.1 s for the cut-downtechnique.

Mostcombinatoriallibrariesare(fortunately!)not random
in theirdistributionof modelfitting compounds.Thiscreates
productmatriceswhicharemuchmoreamenableto thecut-
downalgorithmthanrandommatrices.In thefirst “real-life”
example(13),a library of 50 aminesand50 acidswasfully
enumeratedand comparedto a model derivedfor activity

Figure 4. Exampleof the cut-downalgorithm.

Table 1. DataComparingthe Branch andBoundandCut-DownAlgorithms

exampleno. matrix type init sizea init densb final sizea cut-downfinal densc branchandboundfinal densc

1 random 10× 10 0.29 4 × 4 0.56 0.62
2 random 100× 100 0.40 10× 10 0.73 0.86
3 random 100× 100 0.20 20× 20 0.32 0.40
4 random 100× 100 0.40 20× 20 0.59 0.65
5 random 100× 100 0.20 10× 10 0.40 0.58
6 random 200× 200 0.10 20× 20 0.32 0.32
7 random 200× 200 0.20 10× 10 0.46 0.64
8 random 200× 200 0.40 10× 10 0.75 0.90
9 random 200× 200 0.20 20× 20 0.37 0.46

10 random 500× 500 0.20 20× 20 0.47 0.54
11 random 1000× 1000 0.20 20× 20 0.48 0.55
12 random 5000× 5000 0.20 20× 20 0.64 -

13 combinatorial 50× 50 0.42 14× 14 1.0 1.0
14 combinatorial 100× 100 0.18 14× 14 1.0 1.0
15 combinatorial 150× 150 0.11 14× 14 1.0 1.0
16 combinatorial 48× 104 0.020 10× 10 1.0 1.0
17 combinatorial 104× 104 0.020 10× 10 0.98 1.0
18 combinatorial 104× 48 0.020 10× 10 0.88 0.88

a Theinitial andfinal sizesof the matricesgivenin dimensionsof thex andy monomeraxis. b Initial densityasdefinedby thenumberof model
matchingcompoundsdivided by the total numberof compoundsin the library. c Final densityfound by the algorithmdefinedas the numberof
modelmatchingcompoundsin the matrix definedby the final size.
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(Table1). Oneplatewasproposedfor the syntheticlibrary
(96-well format), anda 14 × 14 library wasdesigned(the
design was createdslightly larger than the desiredfinal
library size anticipatingthe unavailability of somemono-
mers).Our resultsshowthatboth thecut-downandbranch
andboundmethodswereableto find completesubmatrices
(i.e. of 100%density).Examples14 and15 arefor slightly
larger initial library sizes using the same combinatorial
library. The final syntheticmatrix size calculatedwas the
sameasthatin example13,andtheresultsagainshownearly
equivalentbehavior.The final threeexamples(16-18) are
takenfrom a threecomponentlibrary in which oneelement
is heldfixed in succession.Thedensitiesobtainedfrom both
algorithmsarenearly identical for this systemaswell.

In conclusion, we have presenteda method for the
calculationof a highly densesyntheticsubmatrixof model
matchingcompounds,givenasparsematrixof model-fitting
compounds.While thecut-downmethodis shownto function
adequatelyon random matricesas comparedto a more
precisebranchandboundmethodology,its strengthis that
it takesadvantageof thecorrelationbetweensimilarity and
activity foundin real-lifecombinatoriallibrary designefforts.
In suchcases,thecut-downmethodperformsalmostidenti-
cally to the more computationallyexpensivebranch and
boundalgorithm.Theareain which thecut-downmethodis
potentiallymostsuccessfulis its extensionto largeandhigher
ordermatrices,atwhichpoint thecomputationalcostof other
methodsof clique detectionbecomeoverwhelming.Ad-
ditional benefitsof the algorithm include that it is fairly
intuitive andthatadditionalfactorssuchaspriceor similarity
might be easily incorporatedinto the scoreusedfor each
row andcolumn.
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