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The use of combinatorialchemistryhas becomecommonplacewithin the pharmaceuticaindustry. Less
widespreadout gainingin popularityis the derivationof activity modelsfrom the high-throughputassays
of theselibraries. Suchmodelsarethenusedasfilters during the designof refineddaughteiibraries. The
designof thesesecondgeneratioribraries,which efficiently testandconformto the derivedactivity model
from the large spaceof virtual possibilities,remainsan areaof considerableesearchWe presentherea
computationallyefficient methodfor the designof optimally densg(in modelmatchingcompoundsyynthetic

matricesfrom in silico virtual libraries.

INTRODUCTION

Combinatoriakchemistry—2 is increasinglybeingusedby
the pharmaceuticahdustryasa powerfultool to speedhe
procesof drugdiscoveryandoptimization?~7 This technol-
ogy has also profoundly reshapedthe opportunitiesfor
computationalnput during drug discoveryandleadoptimi-
zationefforts. Theapplicationof computationamethodshas
quickly expandedrom suggestiongor tensof compounds,
as might come from structurebaseddesign,to thousands
and eventensof thousandf compoundsijn the form of
combinatorialibrary designsThe needto proposehousands
of compounddor synthesiandscreeninghasdemandedhe
developmenor extensionof severalcomputationaldesign
techniquesuchasdiversity #8 informative design® cluster-
ing,? dockingi®*? and 3-D searching:13

The useof an activity modelasa computationafilter is
an exampleof a computationaimethodologywhich is still
evolvingto meetthe needsof combinatoriakchemistry.This
techniquewasoriginally appliedto smallsetsof compounds,
andit hasbeenusedsuccessfullyto identify a numberof
novelinhibitor classe$# '8 Suchmodelsattemptto represent
whatis known, suspectedor might be inferred aboutwhat
is necessaryor activity againsta specifictarget.An activity
model may be createdin many different ways using
pharmacophoregxcludedvolumes,key features,or even
crystallographialata.Indeed therearemanycommerciaband
proprietarysoftwarepackageslevotedto just thistask®-2!
However,two obstaclesemainwith the extensionof this
techniqueto the designof syntheticcombinatorialibraries.

The first obstaclecomesfrom the applicationof these
filters to extremelylarge numbersof compoundsActivity
modelswhich weredevelopedo operateon smallnumbers
of compoundsmustnow dealwith the explosionin product
space that is inherent in any combinatorial chemistry
approachFor example,a combinatoriallibrary createdby
peptidebondformationhasa potentialsizeof morethan25
million productsf only the >5000acidsand>5000amines
from the Available Chemicalsirectory (ACD) areconsid-
ered.Fromthislibrary of ~25 million only arelativelysmall
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Figurel. Schematicepresentationf thestepsnvolvedin creating
a syntheticmatrix library from a virtual library.

numberof compoundscan be synthesizedusually in the
range of ~1000 or less. It is this choice of which 1000
compoundgo make(from the 25 million sourcepool) that
computationalmethodsaddress.The developmentbof less
complexcomputationafilters hasbeennecessaryo address
this problem.A numberof both academicand commercial
programshave beerdevelopedrecently which attemptto
solvethis problemusing variousapproache®’ 24

The secondobstaclecomesfrom the experimentalcon-
straintsof combinatoriakynthesisIinsteadof selectingone,
two, or ahandfulof compounddgor synthesiscomputational
methodsnow haveto selecta larger setof compoundsor
matrix synthesisSyntheticcombinatorialibrariesaregener-
ally designedwith limits on both the total number of
compoundsynthesizequsuallya setof 96-well plates)and
on the numberof monomersused.All productsin arow or
column of the plate containthe samemonomer;this is the
essenceof the term “matrix constraint”. This constraint
typically operateslownstreanof an activity model(Figure
1). Thatis, evenwhenanactivity filter is appliedto avirtual
combinatorialibrary, unlessthefilter is very stringent,one
is still left with many more compoundsthan can be
synthesizedlt is avery challengingcomputationaproblem
to determinewhich subsetof these compoundsis both
optimally densein “model-matching’compoundsandame-
nableto the experimentamatrix constraints.

One note of cautionis that the use of matrix synthesis
and activity modelsmay greatly sacrifice the diversity of
theresultantsyntheticlibrary. If “one-off” compoundsvere
madeinsteadof a matrix synthesis,the library could be
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Figure 2. Products P, formedfrom monomersR, andC,, with
either model matching (1) or not (0). A successfuldetection
algorithmwill find the maximally densesubmatrixof 1's.

“cherry picked” from theidentified compoundgmodelfitting
or otherwise) Additionally, a diversity metriccouldbe used
to ensureselectionof a maximally diverseset. The benefits
of sucha library needto be weighedagainstthe possible
difficulties of one-off synthesisand the greatly increased
numberof reagentsiecessaryComputationabchemeshat
arenot dependenuponexplicitly testingeachmemberof a
library, suchasgeneticalgorithmg® or simulatedannealing,
have beemlevelopedindusedwith goodresultsfor synthesis
not held to matrix constraints.

Figurel depictsthetwo separatehallengesutlinedhere.
The first is filtering/testing the virtual library againstthe
activity model. The secondis the subjectof this paperand
is thematrix designof a synthetidibrary whichis maximally
densdan model-matchingompoundsWe presentereresults
from two solutionsto the problem of designinga small
combinatorialmatrix from a much larger sourcepool of
productsof acombinatoriareaction.Thefirst, a branchand
boundtechniquejs the morerigorousbut becomesompu-
tationally intractableevenwith moderatelysized|libraries.
To overcomethis problem,we also presenta “cut-down”
approximationto the branchand boundsolutionand show
thatthe results,with respecto a real combinatoriallibrary
and activity model, closely approximatethat of the true
solution.

METHODOLOGY

Matrix Constraints. A syntheticcombinatorialmatrix is
composedf products(Px) which have beerformedfrom
monomergR; andCy). An exampleof a genericcombina-
torial matrix is shownin Figure 2. The productsof sucha
matrix canbetestedagainsta derivedactivity model,giving
eachindividual compounda binary matchingor not-matching
score.Looking at a combinatorialmatrix such as that in
Figure2 revealghe necessityof designingn monomerspace
(Ry to Ry, and C; to C)) to obtaina productspace(Pi; to
Py) of interest.Thatis to say,only by careful selectionof
monomersanthe competingdesigncriteria of library size
and percentagef model-matchingoroductsbe balanced.

Designingsmall syntheticmatrix librariesfrom the space
of all possibleproductsfor a combinatorialreaction,when
reducedo its simplestform, canbethoughtof asa problem
of cligue detectior?® The combinatoriaimatrix, oncetested
againsthemodelof interestbecomes sparsebinary matrix
(i.e. composedf only 1's and0’s) with the 1’scorrespond-
ing to the model-fitting compoundsaindthe 0’scompounds
that do not fit the model. Finding a maximally dense(i.e.
containingthe most1's) submatrixin sucha systemcanbe
done using a branch and bound algorithm?” We have
implementedhis relatively expensivesolutionanduseit for
comparisonto our more approximatebut computationally
more expedientcut-downmethod,describedater.
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Branch and Bound. Given a sparsematrix asa starting
point, the branchand boundalgorithm selectswhich rows
andcolumnsto includein afinal, maximally densesubma-
trix. The choiceof including any particularrow or column
can be thoughtof as a “branch”, and the exclusionas a
“bound”. In thelimit of no boundsall possiblesubmatrices
areconsideredguaranteeindpotha goodresultandhorrible
run time). During the selectionprocesshis algorithmoften
reconsidersts decisiongbrancheshpy consideringa bound
heuristic. The bound heuristicis a routine that looks at a
currentselectionof rows andcolumnsandreturnsan upper
boundon how densea completesolutionof which they can
possiblybeapart. Thus,asis oftenthe casewhenthebranch
andboundalgorithmhasfounda goodtentativesolutionand
a new partial solutionbeinginvestigatedurnsout (by way
of the bound)to haveno chanceof being any better,the
searchis curtailed.As long asthe boundreturnedis correct,
the algorithmstill finds an optimal solution.If the boundis
not alwayscorrect(andis merelyheuristicin nature),then
the branchand boundalgorithmmay returna solutionthat
is not the bestpossible.

A trivially correctboundis to alwaysassumethat any
partial selectionof rows and columnscanbe extendednto
amatrix of densityl. An exampleof thiswould beto assume
that a given 3 x 3 matrix which contained2 desirable
productscould be extendedinto a 5 x 5 matrix which
contained25 desirableproducts.This is patentlyfalse. This
bound,while possible,is not particularly usefulasit never
allows the branchand boundalgorithmto skip any of its
searchA slightly morerealisticboundis givenby assuming
we can add perfectrows and columnsto any matrix. An
examplewould beto assumeny3 x 3 matrix containing2
desirableproductscan be extendedinto a 5 x 5 matrix
containing5 x 5 — 3 x 3 + 2 = 18 desiredproducts.This
would also be correct,yet very inefficient. So, in addition
to beingcorrectwe wish for our boundsto betight. Thatis,
we would like correctboundsthat tendto be small. One
way to do this would be to use a searchto find which
completesolutionsa partial selectionof rows and columns
canbe expandednto. However,this involvesjust asmuch
work as the branch and bound algorithm itself. When
confronting such an intractable problem, the traditional
approachs, insteadof solvingthe problemat hand,to solve
a different problemthat hasbeenchosento be easierand
quickerto solve.Thistechniquds calledarelaxation Below
we describethe relaxationwe employedin our cut-down
method.

Relaxation of the Problem. Our original problemis to
selectan actualsmall matrix (for synthesis)rom a larger
matrix (of potential products). Any such matrix can be
describedasthe intersectionof a setof rows and columns
from the original larger matrix. For eachrow we reservea
variableR (i.e. Ry, R, ..., R). We restrictthe R to be zero
or one.Whenrow | (which, remembergdenotesa monomer
selection)hasbeenselectedor synthesiswe recordthis by
settingR to 1;if row | hasnot beenselectedwe recordthis
by settingR, to 0. Similarly we reservea setof variablesC,,
C,, ...,Cy torecordour columnselectionsWe furtherassume,
by simulatingthe possiblereactionsandscoringthe product
moleculesthatwe havereadyconstan®;; suchthatP;; has
beensetto 1 if we (in silico) like the moleculefoundin the
ith row andjth columnandO otherwise.lt is importantto
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note the following: the R's and C’s are variablesand the
P’'s are constant(determinecby our software).

In this notation we see that a library using m row
monomersand n column monomers(yielding m x n
products)is exactlya settingof the R and C variablessuch
that

X Y
;Ri =m and ;Ci =n N

(RemembeR; andC; arerestrictedto eachbe zeroor one.)
Thenumberof desirednoleculegickedupin adesigngiven
by a particularsettingof the R and C variablesis thenjust

XY
3 SPIRC 2)

Only moleculeghatarein both a selectedow andcolumn
(R = 0 andC; = 0) and“desired” (P;; = 0) contributeto the
sum.

This leavesus with the abstractproblemof, for a given
setof constant$, finding settingsfor the variablesR andC
thatmaximizethesum(2). To “relax” the problem,we drop
one or more of the constraints.This producesa bound
becauseanysolutionof the original problemis alsoa solution
to the relaxedone; the optimal value canonly go up. The
trick is to drop enough constraintsso that the problem
becomeseasy, but not so many that the bound becomes
meaninglesslyarge.

Our relaxedproblemwasto simply replacethe condition
that all R and C; be each0 or 1 with that they be real
numbersin the range0—1 (i.e. we now allow fractional
valuessuchas 0.5). While solutionsto this mathematical
problemcanno longerbe interpretedas selectionsof rows
andcolumns,we canusethemasboundsin our branchand
bound search.This type of problemis called a quadratic
programandin this casg(positivedefinite)is easyto solve?’

Graph Theory. An alternativein attemptingto find a
computationally less intensive solution to the synthetic
combinatoriallibrary designis to approachit in terms of
graphtheory.By graphwe meana collectionof items(nodes)
thatarejoinedin pairs(edges)Foramatrix, we canconsider
eachrow andeachcolumnof our possiblesynthesismatrix
asa node.If the compoundgiven by the pairing of a row
andcolumnis consideredyood, we includean edgen the
graph;otherwisewe do not (Figure 3). In graphtermswe
wishto find a smallsetof nodesthathasa largernumberof
edgeswithin it. A graphwith thelargestpossiblenumberof
edgegonefor eachpair of nodes)is calleda “clique”. The
problemof finding a cliquein alargergraphis called“clique
detection"andis awell-knownbutdifficult problem?® While

J. Chem. Inf. Comput. Sci., Vol. 40, No. 3, 2000 703

our currentproblemis notto find a clique, it canbe shown
thatit differs only in unimportantdetails.Thatis, if one had
anefficientmethodfor finding densesubmatriceswe could
usethis methodto find cliquesin graphs.Becauseof this

bidirectional relationship,and somesignificant notational
similarities, we considerour problemvery closely related
to clique detection,which is the literaturewe lookedto in

searchof solutions?6:?

Cut-Down Algorithm. Usingthe graphtheoryapproach
asinspiration,we approximatehe exactsolutionby usinga
“cut-down” procedureinsteadof the selection,or “build-
up”, approactemployedn the branchandboundtechnique.
The cut-downmethodis whatis called a greedymethod’
in that it eliminatesthe row or column that seemsmost
advantageouso remove and never revisits its decision.
Unfortunately asbothclique detectiorandnear-densenatrix
detectionare both NP-hard,thereis no guaranteehat such
asimplemethodwill find the optimalsolution.However it
is guaranteedhat the matrix returnedby this methodwiill
be amenableo synthesis(having the specifiednumberof
rowsandcolumns)andwill be atleastasdenseastheinput
data.In fact, the output matrix will alwaysbe amongthe
mostdenseof all the matricesit considerson the way to a
solution.

For simplicity, the cut-downmethodwill bedescribedhere
asatwo-dimensionaproblem.Thealgorithmcanbeoutlined
asfollows:

(1) Define the desiredsyntheticmatrix dimensions.

(2) Examinethe matrix and determinea scorefor each
row andcolumn (i.e. monomer)in the matrix. The scorein
its simplestform can be defined as the numberof model
fitting compoundsresentin the row or column.

(3) Beginning with the list of monomers(i.e. rows or
columns)furthestfrom the desiredlength,removethe row
(or column)which hasthe lowestscore.

(4) Recalculatethe score.

(5) Go backto step2 until the matrix is of the desired
size.

This methodis intuitively attractivesinceit corresponds
most closely to what would be doneif the problemwere
presentednanually.Benefitsof this algorithminclude that
theresultantmatrix will necessarihjhave amoveralldensity
of model-matchingompoundgreaterthanor equalto that
of the initial matrix. Additionally, the methodcan accom-
modaterectanguladesignsandis easilyextensibleo higher
ordermatricesandmorecomplexscoringfunctions.Finally,
this approachis intuitive and scaleswith the number of
monomersilt is importantto notethattherecentlydeveloped
PLUMS algorithn?® describedat the Fifth International
Conferenceon ChemicalStructureshasseveralinteresting
similaritiesto the methodologydescribechere,but remains
distinct. PLUMS is an interestingexampleof “convergent
evolution”, asmethodologicaproblemsareidentified through-
out the industry similar solutionsare developed*

A simpleexampleof the cut-downapproachs shownin
Figure4. Theinitial matrix A is shownwith the scoresfor
theindividual rowsandcolumnslisted. If thedesiredmatrix
sizeis 3 x 3 andtheinitial matrix is 10 x 10, eitheraxis
may be examinedfirst as neitheris further from the final
sizethanthe other.After two rounds,oneof row elimination
and oneof columnelimination, matrix B is obtained.This
processs continuedyesultingin matricesC, D, E, etc.,until
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Figure 4. Exampleof the cut-downalgorithm.

thefinal matrix J is determinedThedensityof model-fitting
compoundsin the original combinatorialmatrix was 5%,
while thefinal matrix containsa densityof 90%. Attempting
to optimizeby handthe densityof model-fittingcompounds
from even anextremely small 10 x 10 matrix is an
interesting academicexercise (left to the reader) which
quickly showsthe difficulty to be expectedasthe sizeand
dimensionalityof the problemincrease.

RESULTS/DISCUSSION

The resultsof applying the cut-downalgorithmto both
randommatricesand real combinatoriallibraries are sum-
marizedin Tablel. Thefirst 12 examplesarefor arandomly
generatedinary matrix. This presentsa pessimalcasefor
cliguedetectiontherandommatrix assumeso relationship
betweerrow andcolumncomponentgandthe productresult.
This is not the casein a combinatorialmatrix containing
model-matchinggcompoundsasparticularmonomergrows
or columns)tendto bevery correlatedwith “value” (model-
matching).Thatis to say,if P;; matchesanactivity model,
thenit is likely (throughthesimilarity hypothesi®) thatother
compoundsformed with Ry will also be model-matching.
The next 3 examplesn Table1 (13—15) arefor a generic
combinatorialibrary (suchasaminesandacidsin anamide
bondformation)screene@gainsictivity modelson anactive
project.Thelast3 combinatoriakexampleg16—18) arefrom
a threecomponentdihydroisoquinilinondibrary 2°

In examplel, given the randommatrix of initial size 10
x 10 andinitial densityof 29%, a final “synthetic” matrix
sizeof 4 x 4 wassought.The cut-downalgorithmwasable
to find a matrix which was 50% densein model fitting
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compoundg8 out of 16). The branchandboundalgorithm
with polynomial refinementwas able to do slightly better,
finding a 62% densematrix (10 out of 16). For this small
test,bothmethoderformednearlyequivalentlyandneither
wascomputationallyprohibitive. The cut-downmethodtook
~0.5sonalargememoryPentium400MHz machinewhile
the branchand bound algorithm took ~1 s on the same
machine.

The remaining examples(2—12) on random matrices
comparethe behaviorof the branchand bound algorithm
with that of the cut-down algorithm in caseswhere the
computationakexpenseof the branchand boundalgorithm
becomesmore significant. We presentthese results by
employingmatricesof differentinitial sizes,densitiesand
desiredfinal sizes.It is apparenfrom examplesl—12 that
for a randommatrix the cut-downmethodis ableto find a
densesubmatrixwithin 5—10% of the densityfound by the
morecomputationallyexpensiveoranchandboundtechnique.
The differencesin computationakpeedbetweenthe algo-
rithms becomemoresignificantwith eitherincreasednitial
library sizeor dimensionalityof the problem.In example3,
thebranchandboundalgorithmtook ~7 min, 3 s b calculate
theresult,in contrasto the cut-downmethodwhich needed
only ~0.5 s for the samesystemon anidentical 400 MHz
Pentium.A more stark exampleis the 500 x 500 matrix
(examplel0) in which the branchandboundalgorithmtook
severalhoursto determineits result, while the cut-down
algorithmonly required~1.4s. Examplesl1 and12 contrast
the methodologieperformancefor larger systems.n the
caseof the 5000 x 5000arraywe wereunableto calculate
the branchand boundresultwithin a reasonableime (<1
week). The 1000 x 1000 array took severaldaysof CPU
time (Pentium400MHz) for the branchandboundalgorithm
ascomparedo the ~2.1 s for the cut-downtechnique.

Most combinatorialibrariesare(fortunately!)notrandom
in their distributionof modelfitting compoundsThis creates
productmatriceswhich aremuchmoreamenabléo the cut-
downalgorithmthanrandommatrices|n thefirst “real-life”
example(13), alibrary of 50 aminesand50 acidswasfully
enumeratedand comparedto a model derivedfor activity

Table 1. DataComparingthe Branch andBoundand Cut-Down Algorithms

exampleno. matrix type init sizeét init den$ final size* cut-downfinal den$ branchandboundfinal den§
1 random 10x 10 0.29 4 x4 0.56 0.62
2 random 100x 100 0.40 10x 10 0.73 0.86
3 random 100 x 100 0.20 20x 20 0.32 0.40
4 random 100x 100 0.40 20x 20 0.59 0.65
5 random 100x 100 0.20 10x 10 0.40 0.58
6 random 200 x 200 0.10 20x 20 0.32 0.32
7 random 200 x 200 0.20 10x 10 0.46 0.64
8 random 200 x 200 0.40 10x 10 0.75 0.90
9 random 200 x 200 0.20 20x 20 0.37 0.46
10 random 500 x 500 0.20 20x 20 0.47 0.54
11 random 1000x 1000 0.20 20x 20 0.48 0.55
12 random 5000x 5000 0.20 20x 20 0.64 -
13 combinatorial 50 x 50 0.42 14 x 14 1.0 1.0
14 combinatorial 100x 100 0.18 14 x 14 1.0 1.0
15 combinatorial 150 x 150 0.11 14 x 14 1.0 1.0
16 combinatorial 48 x 104 0.020 10x 10 1.0 1.0
17 combinatorial 104 x 104 0.020 10 x 10 0.98 1.0
18 combinatorial 104 x 48 0.020 10x 10 0.88 0.88

a2 Theinitial andfinal sizesof the matricegjivenin dimensionof thex andy monomeraxis. ® Initial densityasdefinedby the numberof model
matchingcompounddivided by the total numberof compoundsn the library. ¢ Final densityfound by the algorithm definedas the numberof

model matchingcompoundsn the matrix definedby the final size.
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(Table1). Oneplatewasproposedor the syntheticlibrary
(96-well format),anda 14 x 14 library wasdesignedthe
designwas createdslightly larger than the desiredfinal
library size anticipatingthe unavailability of somemono-
mers).Our resultsshowthat both the cut-downandbranch
andboundmethodswvereableto find completesubmatrices
(i.e. of 100%density).Examplesl4 and 15 arefor slightly
larger initial library sizes using the same combinatorial
library. The final syntheticmatrix size calculatedwas the
sameasthatin examplel3, andtheresultsagainshownearly
equivalentbehavior.The final threeexampleq16—18) are
takenfrom a threecomponentibrary in which oneelement
is heldfixed in successionThedensitiesobtainedrom both
algorithmsare nearlyidenticalfor this systemaswell.

In conclusion, we have presenteda method for the
calculationof a highly densesyntheticsubmatrixof model
matchingcompoundsgivena sparsematrix of model-fitting
compoundsWhile the cut-downmethodis shownto function
adequatelyon random matrices as comparedto a more
precisebranchand boundmethodologyits strengthis that
it takesadvantagef the correlationbetweensimilarity and
activity foundin real-life combinatorialibrary designefforts.
In suchcasesthe cut-downmethodperformsalmostidenti-
cally to the more computationallyexpensivebranch and
boundalgorithm.Theareain which the cut-downmethodis
potentiallymostsuccessfuis its extensiorto largeandhigher
ordermatricesatwhich pointthe computationatostof other
methodsof clique detectionbecomeoverwhelming.Ad-
ditional benefitsof the algorithm include that it is fairly
intuitive andthatadditionalfactorssuchasprice or similarity
might be easily incorporatedinto the scoreusedfor each
row and column.
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