
Detecting and Exploiting Decomposability in Update Graphs

Prasad Chalasani
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
chal+@cs.cmu.edu

Oren Etzioni*
Department of Computer Science

and Engineering, FR-35
University of Washington

Seattle, WA 98195
etzioni@cs.washington.edu

John Mount
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
jmount+@cs.cmu.edu

Abstract

Model-learning and problem-solving algo-
rithms can only be integrated when the out-
put of the former fulfills the expectations of
the latter. Korf's Macro-Table (KMT) algo-
rithm requires serial or total decomposabil-
ity of the operators in its world model. The
problem of detecting decomposability has
been open since Korf introduced the KMT
algorithm in 1983. We present a polynomial-
time algorithm for detecting total decompos-
ability in update graphs, an efficiently learn-
able model of external environments, and an
exponential-time algorithm for detecting se-
rial decomposability. A number of additional
results are presented including a transforma-
tion of update-graph models to permutation
group problems that can be handled by Furst,
Hopcroft and Luks's (FHL) permutation-
group algorithm. The results facilitate the
integration of Schapire and Rivest's update-
graph-learning algorithm with the KMT and
FHL algorithms.

1 INTRODUCTION

An autonomous agent seeking to solve problems in
an external environment faces two related challenges:

*This paper describes research done primarily at
Carnegie Mellon University's School of Computer Science.
The second author was also supported by an AT&T Bell
Labs Ph.D. Scholarship.

This research was sponsored by the Avionics Labora-
tory, Wright Research and Development Center, Aeronau-
tical Systems Division (AFSC), U.S. Air Force, Wright-
Patterson AFB, Ohio 45433-6543 under Contract F33615-
90-C-1465, ARPA Order No. 7597.

The views and conclusions contained in this document
are those of the author and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the U.S. government.

inferring an internal model of the environment and
using the model to efficiently solve problems in the
environment. Whereas previous work has addressed
these challenges in isolation ([RS87], [Sch88],[Kor85],
[FHL80J),this paper discussessolving these in concert.

In [RS87],Rivest and Schapire present a polynomial-
time algorithm that reliably learns an internal model
for a class of finite automaton environments, called
permutation environments. They show that their in-
ternal model, called the update graph, is a natural en-
coding of the behavior of finite automaton environ-
ments, and could be as small as logarithmic in the size
of the state graph of the automaton. However,they do
not consider the possibility of using the update graph
as a state representation for solving problems.

Two candidates for use in problem solving using up-
date graphs are: Korf's [Kor85]Macro-Table (KMT)
algorithm, and Furst, Hopcroft, and Luks's (FHL)
[FHL80]permutation-group algorithm. However, an
update graph representation may not necessarily sat-
isfy the assumptions these algorithms make about
their input representation. The KMT algorithm can
only be applied to a problem representation which has
serially/totally decomposable actions. The FHL algo-
rithm only solves permutation group problems. So an
autonomous agent that uses these problem-solving al-
gorithms must be able to efficientlyperform two tasks:
(b) detect whether the learned update graph satisfies
the input requirements of the algorithms, or
(a) Transform the update graph into a representation
which does satisfy those properties.
Our main aim in this paper is to showpolynomial-time
algorithms that can be used to accomplish these tasks
under different conditions.

2 OVERVIEW

An update graph is a graph model of a finite automa-
ton environment, whose node-values (called the label-
ing) uniquely characterize the state of a finite automa-
ton, so an update graph can be used as a state repre-

mailto:+@cs.cmu.edu
mailto:etzioni@cs.washington.edu
mailto:jmount+@cs.cmu.edu

sentation for problem-solving. A problem to be solved
using an update graph can be posed as a goal-labeling.
In a permutation environment, executing action b has
the effect of permuting the node-values according to
a permutation Jrb. Thus, problem-solving with the
update graph of a permutation environment can be
viewed abstractly as the following problem, which we
call the general permutation problem, GPP: Given a
set of permutations II of degree n, two n-dimensional
state vectors Vo (initial vector J and V¡¡ (goal vector J,
efficiently find a short sequence of permutations from
II that transform Vo into Vg.

Two algorithms exist that solve variants of the GPP:
(a) Furst, Hopcroft, Luks's [FHL80J (FHL) algorithm
solves a restricted version of GPP in which the values
of the components of Vo are distinct, and
(b) Korf's Macro Table (KMT) algorithm solves prob-
lems in which actions (not necessarily permutations)
are serially/totally decomposable.

Our main results are polynomial-time algorithms that
analyze the structure of a GPP, in order to:
(a) detect reliably whether the permutations II are to-
tally decomposable with respect to Vo, (which implies
they are serially decomposable) so that the KMT al-
gorithm can be applied,
(b) reduce the Gpp to a new Gpp of smaller size that
may satisfy the requirements of the FHL or KMT al-
gorithms, and
(c) transform the GPP to another GPP so that either
the FHL or the KMT algorithms can be applied.

3 DEFINITIONS

The "world" in which an intelligent agent finds itself
can have different degrees of structure. The language
of group theory provides a succinct way of describing
regularities in the environment.

A group [Mac68J is defined by a set G and a binary
operation o such that (a) G is closed under o, (b) the
operation o is associative, (c) every element of G has a
inverse, and (d) there exists an identity element e in G.
If there is a subset X of G such that all elements of G
can be obtained by repeatedly applying the o operator
to elements of X, then X is said to generate G, and
the elements of X are called generators of G.

By a permutation Jr of an arbitrary set X we shall
mean a bijection from X to itself. Any given collec-
tion of permutations over the set X generates a per-
mutation group under the operation of composition of
permutations, and the permutations in the group are
said to have degree n = lXI. We use the notation (DI
to denote the group generated by the permutations II.
Note that the collection of all permutations of X forms
a group Sx under composition of functions. In par-
ticular, if X = {I, 2, ...n}, we denote the group of all
permutations over X by Sn, and call Sn the symmet-

ric group of degree n. If g is a permutation of degree
n, then the result of "applying the permutation g to
an n-dimensional vector V" is a new vector VI = g(V)
where g(i) = j implies V/[jJ = V[i], for i, j = 1,2, ...n.

A finite automaton environment (FAE) £ is character-
ized by a tuple (Q, B, P, Ó,.,), where Q is a finite set of
states, P is a finite set of predicates, B is a finite set
of basic actions, Ó : Q x B --+ Q is the state transition
function, ., : Q x P --+ ~ is the sensor function that
associates predicate-values with states, ~ being the
(finite) set of possible predicate values. We use the
notation qa to denote the (unique) final state reached
after applying an action-sequence a E B* from state
q. Note that in a finite automaton environment, for
all states q, and for all bEB, qb must be well defined,
and unique.

An environment with more structure is the Permu-
tation Environment(PE), [RS87J, which is a finite
automaton environment where the transition function
of each action b: Ó (., b) : Q --+ Q is a bijection on Q.
This definition implies that for each state of the au-
tomaton, there is exactly one incoming and one out-
going b-arrow, for every action bEB. Thus for a PE,
all the actions B are invertible.

Rivest and Schapire [RS87Jdevise an efficient inference
algorithm for permutation environments.

Examples:
An example of an FAE is the 8-puzzle environment, £8,
whose action-set {L, R, U, D} corresponds to the four
directions (left, right, up, down) in which the blank
can be moved. The predicates are Pi, i = 1,2, ...8
whose value is the position of tile i. The actions of £8
are not very regular. For example, the action L has
"different kinds of effects" in different states. When
the blank is in the leftmost position, this operator has
no effect. (In order to model the 8-puzzle as a finite
automaton, we must define a next state for every ac-
tion, so when the action is "not applicable" in the usual
sense, we say that the next-state is the current state it-
self.) The 8-puzzle environment £8 is clearly not a PE
because, for example, two different states can lead to
the same state through the action L: A state s whose
bottom row is [B 1 2J, and a state which is the same as
s except that its bottom row is [1 B 2J. (B represents
the blank position). So, it can be pointed out that
while the 8-puzzle operators are "invertible", they are
only invertible in the colloquial sense. They are not
invertible in the corresponding finite automaton.

The Rubik's Cube environment £Rubl with the usual
operators, and predicates with values that each rep-
resent the position of a given square on the cube is a
PE. This is because the effects of the operators are
uniform: any given state is reachable from exactly one
other state, through a given operator. The Rubik's
Cube environment £Rub2 with the same operators, and
predicates whose values each represent which square is

in a fixed position is also aPE by the same reasoning.•
We now turn to another dimension of structure and
regularity in an environment.

3.1 SERIAL & TOTAL
DECOMPOSABILITY

Consider a state vector representation for a FAE where
each state is associated with an assignment of values
to n state variables. A given assignment to the n vari-
ables is called a state vector. Note that different states
need not have distinct state vectors. Now, suppose the
n variables are ordered Vl, V2, ... Vn. When a basic ac-
tion bEB is applied to the automaton, the variables
acquire new (or possibly the same) values. Let Ci de-
note the new value acquired by Vi. Then the action b
is said to be serially decomposable w.r.t. the or-
dering of those variables if each Ci is expressible as a
function only of the variables Vj such that j :::; i. If
each Ci is expressible as a function of only Vi, then the
action b is said to be totally decomposable.

Examples: The variables from the environment £Rubl
are totally decomposable because the next position of
a face on the cube is a function of its current position
and the operator applied. However the variables from
the environment £Rub2 are not totally decomposable
because on the Rubik's cube the next face to occupy
a position is not a function of the face currently in the
position and the operator applied. It is not hard to see
the variables of £Rub2 are not serially decomposable for
any ordering. •

3.2 UPDATE GRAPHS

In [RS87], Rivest and Schapire show a probabilistic
polynomial-time algorithm to infer an internal model
of a permutation environment, given the ability to ap-
ply actions to the environment and sense predicates
from it. Their internal model is called the update
graph. We describe briefly the structure of this model.

An update graph can be defined for any FAE £ =
(Q, B, P, Ó,.,). Every node of an update graph has a
value in a given state, and the combination of node val-
ues of an update graph uniquely characterizes the state
of the automaton. For each predicate Pi there is a node
Vi that gives the value of the predicate in any state.
Also, for every node and every action bEB, there
is exactly one directed edge labeled b going into that
node. In the case of a permutation environment(PE),
there is exactly one outgoing edge labeled b from any
node. When an action b is applied to the automaton,
the new values of the nodes are given by simply mov-
ing the node values in the direction of the b-edges: the
new value of a node Vi is simply the current value of
the unique node Vj which has a b-edge going out from
it to Vi. Thus, given the initial labeling (node-values)

of the update graph, it is possible to determine the la-
beling (and hence the values of the predicates P) after
any sequence of actions a E B*. In the case of a PE,
the update graph is completely characterized by:
(a) an n-dimensional vector Vo that gives the initial
labeling of the graph, n being the number of nodes of
the update graph.
(b) a set II of permutations of degree n that corre-
spond to the actions.
We will henceforth denote an update graph by the pair
(II, Vo). Thus, for a PE, the update graph provides a
state vector representation which has a particularly
simple behavior: the values of the state variables are
rearranged when actions are performed. Our algo-
rithms take advantage of this simple behavior.

4 THE GENERAL PERMUTATION
PROBLEM (GPP)

We can now state the general problem that we are con-
cerned with in this paper. Once the agent infers an up-
date graph for the permutation environment, it is pre-
sented with problems of the following form: "Achieve
a particular set of values of the predicates P." This is
equivalent to specifying goal values on a subset of the
nodes ofthe update graph. We consider, the probably
more natural, version of this problem where the goal
specifies the values of all nodes of the update graph.
Thus the problem is, "given an update graph (II, Vo),

achieve a labeling V¡¡, using a sequence of permutations
(actions) from II" .

If G = (DI is the group generated by II, then we use
the notation G(Vo) to denote the set of possible n-
dimensional vectors that are reachable from Vo by per-
mutations of II.

Any problem on an update graph of a PE can
be viewed abstractly as the following General Per-
mutation Problem(GPP) of degree n, denoted by
(II, Vo, V¡¡):

Given a set of permutations II, two n-
dimensional vectors Vo, and V¡¡, efficiently de-
termine if V¡¡ E G(Vo) and if so find a per-
mutation h in the group G = (DI such that
h(Vo) = Vg, and h has a short expansion in
terms of II.

We will take "efficient" and "short" to mean that the
solution time and length do not grow too fast with the
dimension n. Unless otherwise stated we will implicitly
assume that the degree of a GPP is n. We will often
find it convenient to associate a variable (called a state
variable) with each component of the n-dimensional
vectors, called state vectors. Then the permutations
can be said to permute the values of the n state vari-
ables, Vl, V2... , Vn. Thus, for all i, if v~ denotes the new
value of Vi after applying a permutation g E II, then

V~ = Vj such that g(j) = i.

We will be most interested in using the information
from II and Vo to derive information that allowsus to
quickly solve any GPP of the form (II, Vo, y). This is
because by the transitivity of actions this would allow
us to quickly realize a solution of any GPP problem
of the form (II,X,Y) (where X,Y E G(Vo)) which
is exactly what is needed to plan the actions of an
automata. To avoid introducing additional terminol-
ogy we will use the term Gpp to refer to both a triple
(II, Vo, V¡¡) and a pair (II, Vo). The latter style ofprob-
lem will indicate that we are trying to solve (II, Vo, Y)
for arbitrary Y. We will use this notion of a Gpp
whenever the goal vector is superfluous. Anything
shown for a (II, Vo) Gpp will be true for (II, Vo, Vg)

problems.

4.1 HARDNESS OF GPP

It is natural to wonder how "hard" Gpp is. Briefly,we
can show (sketches of the proofs are in the appendix):
(a) Determining if V¡¡ E G(Vo) is no harder than the
Setwise Stabilizer Problem1 (but we have not shown
it to be necessarily as hard as this problem).2
(b) Finding h E G such that h(Vo) = V¡¡ is polynomial
time equivalent (with respect to randomized Turing
reductions) to the Setwise Stabilizer Problem.
And it is known that determining the length of the
shortest expansion of h in terms of II is P-space com-
plete [FSS+89J.It must be emphasized that these are
worst case results and may not correspond to the typi-
cally observed behavior. Furthermore, these complex-
ity results are all relative to the problem size, n, but it
may be to measure complexity in terms of the length
of the shortest expansion of h in terms of II.

4.2 GPP AND PERMUTATION GROUP
ALGORITHMS

If the values of the state variables in Vo are all dis-
tinct, then all vectors in G(Vo) will have distinct state
variables. Thus given a pair of vectors (Vo, V¡¡), where
Vo contains distinct state variables, the permutation
(if any) Jrg that maps Vo to V¡¡ is uniquely defined and
can be found simply by examining the two vectors. To
solve the problem, it then only remains to determine a
short expansion (if any) of Jrg in terms of permutations
from II. We refer to this special case of GPP, where
Vo has distinct components, as a Standard Permuta-
tion Problem, SPP.

lThe Setwise Stabilizer Problem is known to be at least
as hard as Graph Isomorphism but is not known to be
NP-Complete[Hof82]

2Determining if a partially specified labeling 17g can
be extended into a labeling Vg such that Vg E G(Vo) is
easily seen to be NP-complete (reduction from the Clique
Problem[GJ79]).

This is a classic problem in computational group the-
ory. In [FHL80],Furst, Hopcroft and Luks describe a
polynomial-time (in n) algorithm (the FHL-algorithm)
to construct a table for a permutation group G ç Sn
presented in terms of its generators II. This table can
then be used to find an expansion in terms of II for
any permutation gE G. The length of this expansion
may be exponentially long in n, but no results exist
that guarantee that the expansion length is polynomi-
aly related to the optimal expansion. It must be noted
that certain generator sets II exist that generate per-
mutations g whose optimal expansions are exponen-
tially long in n. Clearly, more work needs to be done
in this area.

In general, in a GPP, the values of the components of
Vo need not be distinct, and instead of a unique per-
mutation Jrg that maps Vo to V¡¡ there may be a set
H ç Sn of permutations that do the mapping. How-
ever, only the permutations in G nH are feasible, i.e.,
expandable in terms of II. The set H may be expo-
nentially large (in n), so a naive approach that checks
each h E H for feasibility is ruled out. Thus one must
first find feasible permutations G n H, before finding
a feasible permutation with a short expansion. In sec-
tion 6 we will show polynomial time algorithms that
attempt to transform the original GPP to a smaller
GPP which may turn out to be an SPP, so that the
existing algorithms for SPP may be used.

4.3 GPP AND SERIAL/TOTAL
DECOMPOSABILITY

Consider a variant of the GPP (II, Vo) where the ac-
tions need not be permutations, so that the set ofbijec-
tions II is replaced by a finite set F of functions that
map n-dimensional vectors to n-dimensional vectors.
Suppose that the functions in F are, as above, seri-
ally decomposable. Such problems (F, Vo) are called
serially decomposable problems (SDP). By definition,
not every SDP is a GPP. We have shown, in a GPP,
the permutations need not be serially decomposable,
so not every GPP is an SDP.

In [Kor85J,Korf shows an algorithm that constructs
a macro table (similar to the FHL table) that can be
used to solve SDPs of the form (F, Vo). The table-
construction roughly takes the same amount of time
as solving one (F, Vo, V¡¡) problem without the macro
table (using conventional search techniques). This
could take time exponential in n. However,once con-
structed, this table can be used to quickly generate
short solutions for arbitrary Vo• In fact, the solutions
are guaranteed to be no longer than n times the opti-
mal solution length. And such solutions can be found
in time n times the length of the optimal solution.
Korf's Macro Table (KMT) algorithm assumes that
the actions are serially decomposable w.r.t. the state
variables, and does not attempt to detect whether this
property holds, nor does it try to change the represen-

tation so that it does. Both these questions must be
addressed when trying to apply the KMT algorithm to
a GPP. We consider these questions in sections 5 and
7.

The Korf Macro Table has m rows and n columns,
where each column corresponds to a state variable,
and the rows correspond to the possible values of the
variables. Thus the size of the macro table is propor-
tional to the product of the number of variables, and
the total number of possible values of the variables.
This fact will be relevant in a future section.

In a GPP, the effect of any action is simply a permu-
tation of the state vector. As we show in section 5,
we can take advantage of this fact, to devise a proba-
bilistic polynomial-time algorithm to determine if the
permutations II are totally decomposable. If they are,
since total decomposability implies serial decompos-
ability, the KMT algorithm can be applied to the GPP.
In section 6 it is demonstrated how some GPP prob-
lems can be reduced in size. In section 7 we will show
that every SPP can be easily transformed to a SDP.

5 DETECTING SERIAL/TOTAL
DECOMPOSABILITY

Given a GPP (II, Vo), if the permutations II are serially
decomposable w.r.t some ordering on the state vari-
ables (i.e., vector-components), the KMT algorithm
can be applied to solve problems. However, how can
the agent find whether such an ordering exists, and
find one if it does?

We show that this problem is reducible to determin-
ing whether an arbitrary subset of the state variables
is self-dependent, in the sense defined below. For any
permutation g E (DI, and any subset T of the state
variables, we use the notation g(T) to denote the (list
of) values of the variables T after applying permuta-
tion g to the initial state Vo• Also gh denotes the prod-
uct of two permutations (i.e. the result of applying g,
then h).

Definition 1 (Self-Dependency) A set of state
variables T is self-dependent with respect to permu-
tation h E II (and labeling Vo) iff the values of the
variables T after applying h are a function only of the
values of the variables T before applying the action h.
That is, there is a function f such that

Vg E (DI : g(h(T)) = f(g(T))

If a set of variables T is not self-dependent, then what
evidence of this exists in the behavior of the environ-
ment? This is answered by the following lemma.

Lemma 1 (Witnesses) A set of state variables T is
not self-dependent w.r.t. permutation h E II iff there
are two permutations g and l in (DI such that

g(T) = l(T) and gh(T) =I lh(T)

We call the two permutations g and l witnesses to
the non-self dependency of T w.r.t. permutation h.

We can show the following connection between serial
decomposability and self-dependency:

Theorem 1 An permutation h E II is serially de-
composable w.r.t. a set of variables T, iff T can be
partitioned into disjoint subsets 0"1,0"2, ... O"k such that
each variable in 0"1 is self-dependent w. r. t. h, and for
i = 2,3, ... k, each variable x in O"i has the property that
the set of variables

0"1 U 0"2 ... U O"i-l U {x}
is self-dependent w. r. t. h.

Sketch of Proof:
If h is serially decomposable w.r.t. an ordering
< Vl, V2, ... Vm >, then the above conditions are satisfied
by the partition O"i = {Vi}. This is easy to show from
the definition of serial decomposability. Conversely, if
such a partition exists, then it is easy to show that h
is serially decomposable when the variables of Tare
arranged in increasing order of the index i of the par-
tition O"i to which they belong.D

This theorem suggests the following algorithm for de-
termining serial decomposability of an action h E II
w.r.t. the n state variables. self(II, Vo, T, h) is a pred-
icate that tests self-dependency of a set of variables
T w.r.t. action h. Let X be the set of the n state
variables.

procedure Serial (II, Vo, h)
i --+ O;
0"0 --+ ,p;
left --+ ,p;
repeat

i--+i+l;
O"i --+ {x E (X\ left)l self(II, Vo, leftU{x},h)};
left --+ left U O"i;

until left = X;
endproc

Central to the above algorithm is the procedure self(),
and we show below that this could take time exponen-
tial in ITI. It must be noted that constructing a KMT
by existing weak methods can take time exponential
in the diameter of the problem spacé so unless we
dealing with a family of problem spaces where the di-
ameter does not increase as fast as ITI we see that the
running time SerialO and selfO is dominated by the
time to actually construct a KMT once we have found
a set of serial decomposable variables.

By the witness lemma above, to check if a set of vari-
ables T is not self-dependent, it is sufficient to gener-
ate the two witness permutations g and l in G = (DI,

3the minimum number of operators needed to transform
any state vector in the problem space to any other

from the generators II. Suppose that the agent gener-
ates permutations of G by applying a random sequence
of actions from II. Then how likely is it that two such
witness permutations will be generated, when T is not
self-dependent?

To answer this, we use arguments similar to those
given in [RS87J. Note that when action (permutation)
b is applied to a state vector, the new value of a vari-
able Vi is the current value of the variable Vj where
j = b-1(i). As a mnemonic, we use b-1(Vi) to de-
note the variable Vj. Similarly, b-1 (T) denotes the
set of variables whose current values become the fu-
ture values of the variables T after action b. Then the
witness property above can be re-stated as: If T is
not self dependent w.r.t. action b, then there are two
permutations g,l E G such that g(T) = l(T), and
g(b-1(T)) =I l(b-1(T)).

Now consider the permutations of G = (DI that map
the variables of T and b-1(T) to themselves, i.e., the
subgroup HT that stabilizes Tu b-1(T). Consider
the graph 1íT of left-cosets gHT of HT in G. Then,
if T is not self-dependent, there are two left cosets
gHT and l HT such that the above witness property is
satisfied for g, i. Further, applying a random sequence
of actions is equivalent to taking a random walk on the
coset graph 1íT, starting from HT. It can be shown
that to ensure that two particular nodes are visited
with probability at least 1/2, it is sufficient to take
random steps of length O(me) where m is the number
of nodes in 1íT, and e is the number of edges of 1íT. SO,
to detect self dependency of a set of variables T with
a probability of error at most é, the agent need only
take a random walk on 1íT whose length is polynomial
in m,e, and 1/ é. After each action, it must check if
the witness property holds, and this can done in time
polynomial in n, the size of the state vectors.

How large can the coset graph 1íT be? The number

of nodes m :::;(1~1), since that is the number of dif-

ferent ways of mapping a given set of ITI nodes to
ITI other nodes. Also, e :::;mlIII. Thus the number
of nodes of the coset graph is O(nITI), exponential in
ITI. Since T could be O(n) in general, this means the
serial decomposability detection algorithm above can
take time exponential in n.

However, if the algorithm always checks for the self-
dependency of a constant-sized set T, then the al-
gorithm runs in time polynomial in n. We can show
easily that a set of variables T is totally decomposable
iff every singleton subset of T is self-dependent. Thus
a procedure TotalO can be constructed which simply
tests for the self-dependency of each state variable. If
an environment passes this test, the agent can apply
the KMT algorithm to solve problems.

We have thus shown:

Theorem 2 Given a GPP, (II, VO), of degree n, and
a reliability é, the procedure TotalO runs in time poly-
nomial in ~III,n, l/é) and detects, with error proba-
bility < é, whether the permutations II are totally de-
composable.

It is not hard to see that simple adaptations of Serial
and Total can detect decomposability (serial/total)
w.r.t small clusters of variables rather than individual
variables.

6 REDUCING TO A SMALLER
PROBLEM

Because selfO can run in time exponential in ITI it
is important to reduce the size of ITI whenever possi-
ble. We now develop a polynomial-time algorithm that
attempts to transform a GPP P = (II, Vo) to an equiv-
alent Gpp pI = (nt, V;) of smaller degree. The basic
idea is to detect whether the permutations II permute
blocks of variables in a certain structured way: if so,
then the GPP can be re-cast in terms of block-level
permutations, which necessarily have a degree smaller
than n.

Two GPPs P, pI are equivalent if:
(a) there is a one-one correspondence ,p : II --+ nt,
(b) there is a one-one correspondence , : G(Vo) --+
et(V;), where G = (DI, et = (DI, and
(c) For any V, W E G(Vo) and Jr E II, Jr(V) = W =?
,p(Jr)(,(V)) = ,p(W).

Our idea is an extension of the notion of a closed parti-
tion [Koh78J. Consider a partition r, and a total order
--<on the index-set In = {1,2, ... n}. We write r(i,j)
when i,j belong to the same block of í. Then, w.r.t.
a GPP (II, Vo), we say that (r, --<)is a closed, faithful
(CF) partition, if

Vi,j:VgEII:(r(i,j) /\ i--<j) =? r(g(i),g(j))/\
g(i) --<g(j)

The ordering --<is called a faithful ordering. Note that
the blocks of a CF partition must all have the same
size. Thus, if the GPP has a CF-partition (r, --<),the
effect of any permutation in II is to map --<-ordered
blocks of r to --<-ordered blocks of í. Further, for any
vector in G(Vo) we can then associate a value-pattern
with each block, which is obtained by laying out the
elements of each block in the order --<.

Suppose the blocks are numbered 1,2, ...m, and the
value patterns are numbered 1,2, ... ,k. Since the par-
tition is faithful, the value patterns in any vector in
G(Vo) will be the same, except that their positions
will have changed. So for each g E II, we can de-
fine a new block-level permutation i. And for any
vector V E G(Vo), we can define a corresponding m-
dimensional vector VI whose ith component gives the
value-pattern number of the ith block of í. Thus we

can reduce the GPP (II, Vo) of degree n to an equiv-
alent, smaller GPP (nt, V;) of degree m. We refer to
this reduction as a CF-reduction.

How do we find a CF-partition? We can do this with
a slightly modified version of Kohavi's [Koh78J algo-
rithm, which finds all closed partitions of a state graph
of an automaton in time polynomial in the size of the
state graph. By adding a check to determine faithful-
ness, this algorithm can be used to find all CF parti-
tions in time polynomial in n, the degree of the GPP.
We can choose which CF-partition to use, so that the
resulting new Gpp has useful properties. For instance,
if there is a CF-partition with distinct value-patterns
in each block, then we should prefer to use that parti-
tion over one which does not have this property. Then
the new GPP will be an SPP /SDP, so that both the
Korf Macro Table algorithm and the FHL algorithm
can be applied.

Example:
These ideas can be illustrated by the Top-Spin puzzle
environment, £top, with the "rotate" (r) and "swap"
(s) actions, and binary predicates Pij = 1 if po-
sition i has disc j, and Pij = O otherwise. The
correctly inferred update graph for this environment
should consist of 20 disjoint, isomorphic sub graphs
Uj, j = 1,2, ...20, , where subgraph Uj contains 20
nodes for the 20 predicates Pij associated with disc
j. If we number the nodes in Uj as 1,2, ...20, then the
r action defines a cyclic permutation (1 2 ...20), and
the s action defines two cyclic permutations (14) and
(2 3). In any state, exactly one node Pij in each Uj
will have value 1, and all others have value O. Since
each disc is in a different position, the i for which Pij
is 1 will be different in each subgraph Uj.

A closed, faithful partition of this update graph is
one in which each block i contains the nodes Pij, j =
1,2, ...20, that is each block corresponds to a position
. The faithful ordering on each block i simply orders
the Pij in ascending order of j. Then the new (meta)
update graph UI will have 20 (meta) nodes, and each
node will have a distinct value, since the blocks have
distinct value patterns. The s and r actions define
cycles which are similar to the original cycles. Thus
we can reduce an update graph having 400 nodes with
indistinct values to an equivalent update graph with
20 distinct-valued nodes. Thus in addition to reducing
the size of the update graph, we have managed to ob-
tain a better-behaved update graph: Any problem on
the new update graph is now an SPP, and, as seen be-
fore, both the FHL and KMT algorithms apply. Also,
the new update graph in a sense describes the environ-
ment more "naturally": The value of the (meta-node)
i represents the number of the disc in position i, and
the r and s arrows represent how the discs move among
the positions when the corresponding actions are per-
formed .•

The main result of this section can be summarized as:

Theorem 3 If the index-set {1,2, ... n} has a closed,
faithful (CF) partition 7 relative to the GPP (II, Vo)

of degree n, then this GPP is equivalent to a smaller
GPP of degree equal to the number of blocks of í. Fur-
thermore, all CF-partitions can be found in polynomial
time in n.

7 TRANSFORMING TO A
TOTALLY DECOMPOSABLE
PROBLEM

We show in this section that it is always possible, at
the expense of problem size, to change the representa-
tion of the state vectors in a Gpp so that the actions
(although no longer permutations of the state vectors)
are totally decomposable.

For the GPP of degree n, (II, Vo), Consider the follow-
ing inverted representation X v of an n-dimensional
vector V: Xv =< X1X2... Xk > where Xi is the set of po-
sitions (node indices) that have value ti. The number
of occurrences of the k different values must remain
the same after any action; the values simply get rear-
ranged in the vector. We can show easily that

Lemma 2 In the inverted representation X v I all ac-
tions are totally decomposable.

Proof:

Whenever an action b is applied to the up-
date graph, the values ti move according to
the permutation Jrb. Thus the indices which
acquire value ti after this action depend only
on which indices currently have the value ti.
Thus the new value of Xi depends only on its
current value.

o

Since total decomposability implies serial decompos-
ability, the KMT approach could conceivably be used
with this representation, although the macro table can
in general be very large: the number of rows in the ta-
ble is equal to the size of the set of possible values
of the variables, and this set could be large. For ex-

ample, the number of possible values of Xi is (:i),
where n = ICI, the number of nodes in the update
graph. However, if the ni are all bounded by a con-
stant c, this number would be polynomial in n, which
means the macro table will be of size polynomial in n,
and so problems can still be solved in time polynomial
in the length of the optimal solution.

Clearly, when all the ni = 1, we have a standard per-
mutation problem, SPP, so we have:

Lemma 3 Every SPP can be transformed to a SDP

by inverting the state vector representation.

Thus, for an SPP, both the FHL algorithm and the
KMT algorithm are applicable.

Example:
The ideas of this section can be illustrated by the ex-
ample of the Hungarian Rings puzzle: This is a pair
of interlocking rings of beads. The two rings have two
beads in common where they intersect, and the beads
in each ring can be rotated on that ring. The beads
are colored with k different colors, and there are m
of each color. The goal is to achieve a given color-
configuration. Consider the environment £hun corre-
sponding to this puzzle, with predicates Pi giving the
color of the bead in the position numbered i. This en-
vironment is a permutation environment, and its up-
date graph will have km nodes, and the values of the
nodes will reflect the colors of the beads in the puz-
zle. There are thus m nodes of each color. Now if we
take the inverse representation, there are k variables
Xl, X2 ... Xk, corresponding to the k colors. The value
of each variable Xi is the set of positions containing
beads of color i. Under this representation, all the ac-
tions are totally decomposable, so the KMT algorithm
can be applied.

The number of possible values of the variables is

(n:::). So if we consider the class of Hungarian Ring

puzzles with constant m and variable k, then the size
of the Korf macro table is polynomial in k. •

8 A RECIPE FOR SOLVING
PROBLEMS WITH AN UPDATE
GRAPH

There are many ways in which the different ideas pre-
sented in this paper can be combined into a strategy
for attacking GPPs. We present here one possible
recipe for solving a GPP (II, Vo).

Procedure GPP-Solve(II, Vo)
1. P --+ (II, Vo);

2. If Vo has distinct values then
p is an SPP, so
apply FHL to P, or
apply KMT to the inverted representation of P.
return "success"
endif

3. Find all CF-reductions pI of P
If there is a CF-reduction pI = (nt, V;) then

such that V; has distinct values,
p --+ pl
goto 2.
endif

4. Find the smallest CF-reduction pI = (nt, V;) of P.
If degree(pt) < degree(P) then

p --+ pl

goto 2.
endif

5. If P is totally decomposable then
apply KMT to P.
return "success"
endif

6. (All simplifications and reductions fail)
will have to use search methods to
solve instances of (II, Vo, V¡¡)
individually, couldn't solve (II, Vo)

return "failure"
endproc

9 CONCLUSION

The fundamental problem in integrating a model-
learning algorithm with a problem-solving algorithm
is that the problem-solving algorithm may make as-
sumptions about the state representation that are not
always satisfied by the learned internal model. In
this paper, we considered the problem of coupling
Rivest and Schapire's model-learning algorithm with
two problem-solving algorithms: Korf's Macro Ta-
ble (KMT) algorithm and the permutation group al-
gorithm of Furst, Hopcroft, and Luks(FHL). If the
inferred representation (an update graph) is totally
decomposable, the KMT algorithm can be applied.
We presented a polynomial-time algorithm that de-
tects whether the learned update graph satisfies this
property. We also presented a representation-change
that transforms an update graph problem into a to-
tally decomposable problem. This same transforma-
tion can sometimes change the problem into a permu-
tation group problem that can be handled by the FHL
algorithm. Finally, we presented a polynomial-time
algorithm that finds possible reductions of the update
graph to a smaller, equivalent update graph. In addi-
tion to being smaller (and therefore more tractable)
the reduced update graph may satisfy the require-
ments of the above two algorithms.

Though we have shown how to recognize when a set of
variables in an update graph are serial decomposable
reliably detecting serial decomposability in time poly-
nomial in the size of the update graph is still an open
problem. Since there exist problems whose optimal so-
lutions are exponentially long in the size of the update
graph, it is more practical, from an AI perspective, to
measure efficiency relative to the length of the opti-
mal solution. Developing practical algorithms which
are provably efficient in this sense is an open research
area. Also, methods need to be developed for analyz-
ing the computational complexity of problem-solving
algorithms relative to this measure.

10 ACKNOWLEDGEMENTS

We would like to thank Merrick Furst, Ravi Kannan,
Craig Knoblock, Gary Miller, Tom Mitchell and Ron
Rivest for their helpful discussions.

A HARDNESS PROOFS

In this section we consider the GPP (II, Vo, Vg) and
G = (DI. From [Hof82J we know that the Setwise
Stabilizer Problem and the Coset Intersection Empti-
ness Problem problems for groups are polynomial time
equivalent. So we will use them interchangeable. Some
of these theorems should be known, and we are pre-
senting them here only for completeness.

Theorem 4 Determining if V¡¡ E G(Vo) can be solved
by solve a Coset Intersection Emptiness Problem.

Proof:

Let Jr be any permutation in Sn such that
Jr(Vo) = V¡¡ (it is trivial to determine if such
a permutation exits and if so find it, if no
such permutation exists then Vg ~ G(Vo)).
Let H be the group of all permutations in Sn
that fix Vo (it is easy to find generators for
H). Then Vg E G(Vo) iff HJr n G =I 0.

o

Lemma 4 Given Jr E Sn and G, H e Sn such that
H Jr n G =I 0 finding h E H Jr n G is poly time equivalent
to the Coset Intersection Emptiness Problem.

Proof:

This can be done by noticing that the FHL
table for G (which can be constructed from
generators in polynomial time) yields (by
deleting initial rows and columns) a subgroup
tower I = G(n) e G(n-l) e ... e G(O) = G
such that the index of G(i+l) in G(i) is no
greater than n. Let k be the largest in-
dex such that HJr n G(k) =I 0. WLOG we
can assume k = n (else we can replace G
by G(k)). Let et = G(n-l) and íl,í2" 'ík
(k :::; n) be a complete right traversal of G
by GI. Then since G = U7=1 íiGI we must
have H Jr n et íj =I 0 for some j such that
1 :::;j :::;k. We can check these k possibilities
by checking Coset Intersection Emptiness on
H(Jríi-1) n et for i = 1·· ·k. So we (recur-
sively) solve the smaller problem by finding
hI E H (Jríj-1) net and h = hI íj is the answer.

o

Theorem 5 Finding h E G such that h(Vo) = Vg is
polynomial time equivalent (with respect to randomized
Turing reductions) to the Setwise Stabilizer Problem.

Proof:

From the previous proof it is easy to see that
to find h E G such that h(Vo) = V¡¡ all
we have to do is find h E HJr n G (when
H Jr n G =I 0) which, by the previous lemma,
is poly time equivalent to Coset Intersection
Emptiness (and hence Setwise Stabilizer).

For the other direction let G be an arbitrary
subgroup of Sn, II a set of generators for G
and P e {I, 2"" n} arbitrary. We will use
the GPP problem to calculate the Setwise
Stabilizer of P in G. Let Vo be the length n
vector (Vo)i = 1 if i E P else (Vo)i = O. As-
sume we can solve GPP instances (II, Vo, V¡¡).
We can calculate the setwise stabilizer S of P
in polynomial time with exponentially small
chance of error by running the following pro-
cedure:

1. S = {identity}
2. Repeat n2 times:

Let Jr be a random permutation from G.
Let h be a solution of (II, Vo,Jr(Vo)).
Let S = (S, Jrh-1}.

endrep

The procedure works because during each it-
eration S is a subgroup of stab(P, G) there-
fore if S =I stab(P, G) we have lSI :::;
Istab(P, G)I/2. The GPP solution procedure
has no way of knowing Jr so since Jr is ran-
domly selected from G we see that Jrh-1
will be randomly selected from stab(P, G),
so if S =I stab(P, G) we know Jrh-1 ~ S
with probability;::: 1/2. and in addition we
will have l~, Jrh-1} I ;::: 21SI. Therefore we
need only about 10g2n! successes to compute
stab(P, G). log n! is asymptotically equal to
n log n and is therefore dominated by n2, so
it is a simple matter of statistics (Binomial
trials) to show our chance of failure is expo-
nentially small.

o

Theorem 6 Deciding if there is an extension of a par-
tiallabeling ~ into a labeling V¡¡ such that V¡¡ E G(Vo)
is NP-complete.

Proof:

Since a labeling V¡¡ and a permutation h can
be presented succinctly and we can check in
poly time if h E Gand h(Vo) = h(V¡¡) it is
clear that this problem is in NP.

To prove it is NP-complete we demonstrate
that this problem can encode the Clique
problem (determining if a graph has a clique
of size k, which is known to be NP-complete).
Let J{ be an arbitrary graph of n nodes en-
coded as a length n2 vector Vo such that
(Vo)n*(i-l)+j = 1 if there is an edge from
node i to node j and (Vo)M(i-l)+j = O oth-
erwise. Let G be Sn acting on Vo such that
for Jr E Sn and a length n2 vector v we have:
(Jr(V))M(i_l)+j = VM(7l"(i)-l)+7l"(j)'Let ~ be
the length n2 vector with l's in the first k2 en-
tries and the rest undetermined. Then there
exists V¡¡ such that V¡¡ agrees with ~ in all
the specified positions and V¡¡ E G(Vo) if and
only if J{ has a k-clique.

o

References

[FHL80J M.L. Furst, J.E. Hopcroft, and E. Luks.
"Polynomial-time algorithms for permuta-
tion groups" In Proc. 21st IEEE Foun-
dations of Computer Science, pages 36-41,
1980.

[FSS+89J A. Fiat, M. Shahar, A. Shamir, 1.
Shimshoni, and G. Tardos. "Planning and
learning in permutation groups" In Proc.
30th IEEE Foundations of Computer Sci-
ence, pages 274-279, 1989.

[GJ79J M. Garey, and D. Johnson. Computers and
Intractability A Guide to the Theory of NP-
Completeness W.H. Freeman and Company,
1979.

[Hof82J Christoph M. Hoffmann. Group-Theoretic
Algorithms and Graph Isomorphism
Springer-Verlag, 1982.

[Koh78J Zvi Kohavi. Switching and Finite Automata
Theory. Mc Graw-Hill, 1978.

[Kor85J R.E. Korf. "Macro-operators: A weak
method for learning" Artificial Intelligence,
26:35-77, 1985.

[Mac68J 1.D.Macdonald. The Theory of Groups. Ox-
ford Univeristy Press, 1968.

[RS87J R. L. Rivest and R. E. Schapire. "Diversity-
based inference of finite automata" In Pro-
ceedings of the Twenty-Eighth Annual Sym-
posium on Foundations of Computer Sci-
ence, pages 78-87, Oct 1987.

[Sch88J R.E. Schapire. Diversity-based inference
of finite automata Master's thesis, Mas-
sachusetts Institue of Technology, May
1988.

	Page 1
	Titles
	Detecting and Exploiting Decomposability in Update Graphs
	Abstract
	1 INTRODUCTION
	2 OVERVIEW

	Page 2
	Titles
	3 DEFINITIONS

	Page 3
	Titles
	•
	4 THE GENERAL PERMUTATION

	Page 4
	Page 5
	Titles
	5 DETECTING SERIAL/TOTAL
	Vg E (DI : g(h(T)) = f(g(T))
	g(T) = l(T) and gh(T) =I lh(T)

	Page 6
	Titles
	6 REDUCING TO A SMALLER
	(c) For any V, W E G(Vo) and Jr E II, Jr(V) = W =?

	Page 7
	Titles
	o

	Page 8
	Titles
	p --+ pl

	Page 9
	Titles
	10 ACKNOWLEDGEMENTS
	A HARDNESS PROOFS
	o
	o
	Let S = (S, Jrh-1}.
	o

	Page 10
	Titles
	o
	References

